
Designing for Failure

Strategies to Build Resilient, Always-On Services



Systems today are

Massively distributed, spanning 
multiple data centers, clouds, or 

even continents

Highly integrated, relying on third-
party APIs, cloud providers, and 

external services

Under constant demand, with 
users expecting near-instant 

responses, even during outages. 
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Failover Mechanisms
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Graceful Degradation
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Graceful Shutdown
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Chaos Engineering
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Challenges and how to overcome them
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Circuit Breakers
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Benefits of Circuit breakers

Failure 
solation

Improved 
recovery

Beter user 
experience

Enhanced 
observability



Challenges and how to overcome them
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Automated Recovery Mechanisms

Auto-Scaling: Adjust resources 
dynamically to handle traffic 

spikes.

Self-Healing: Restart failed 
components automatically.

Rollback Strategies: Revert to 
stable versions after failed 

updates.
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Thank you!

https://www.linkedin.com/in/abhishekvajarekar/


