
Designing for Failure

Strategies to Build Resilient, Always-On Services



Systems today are

Massively distributed, spanning 
multiple data centers, clouds, or 

even continents

Highly integrated, relying on third-
party APIs, cloud providers, and 

external services

Under constant demand, with 
users expecting near-instant 

responses, even during outages. 



Redundancy: Building Backup Systems

Infrastructure 
Redundancy

Data Redundancy Service Redundancy



Failover Mechanisms

Automatic Failover Manual Failover



Challenges and best practices

Latency 
during 

Failover

Data 
consistency

Testing 
failover 

scenarios

Human error 
in Manual 

failover

False 
positives

Observability 
and 

monitoring



Graceful Degradation

Fail-Open Fail-Close



Challenges and best practices

Dependency 
Mapping

Performance 
Optimization

User 
Communication

Testing 
degraded states

Plan 
degradation 

early

Leverage 
observability

Iterate and 
improve



Graceful Shutdown

Connection 
Draining

Health Check 
Signaling

State 
Persistence

Timeouts and 
Grace Periods



Chaos Engineering

Failure Injection Controlled 
Experiments

Resilience Metrics



Challenges and how to overcome them

Managing risk Lack of 
observability

Scaling chaos 
engineering



Circuit Breakers

Closed 
state Open state Half-open 

state



Benefits of Circuit breakers

Failure 
solation

Improved 
recovery

Beter user 
experience

Enhanced 
observability



Challenges and how to overcome them

Setting the 
right 

threshold

Balancing 
failures and 

recovery

False 
positives



Automated Recovery Mechanisms

Auto-Scaling: Adjust resources 
dynamically to handle traffic 

spikes.

Self-Healing: Restart failed 
components automatically.

Rollback Strategies: Revert to 
stable versions after failed 

updates.



Conclusion

Redundancy Failover 
Mechanisms

Graceful 
Degradation

Graceful 
Shutdown

Chaos 
Engineering

Circuit 
Breakers

Automated 
Recovery



Thank you!

https://www.linkedin.com/in/abhishekvajarekar/


