
Harnessing Microservices
for Scalable, Fault-Tolerant

ML Systems

By: Abhishek Walia

Understanding Microservices for ML
Monolithic Architecture
Traditional approach with a single, tightly-coupled
codebase where all ML components (data processing, model
training, serving) are integrated into one deployable unit.

Modifications to any component require full system
redeployment. Scaling happens uniformly regardless of
bottlenecks, with limited fault isolation leading to potential
system-wide failures.

Microservices Architecture
Modern approach with smaller, independently deployable
services where ML components (feature stores, model
training, inference services) operate as discrete units with
well-defined interfaces.

Changes remain isolated to affected services. Each
component scales independently based on demand.
Enhanced fault tolerance contains failures to individual
services without system-wide impact.

Key Benefits for ML Systems
Dynamic Scalability
Elastically scale individual ML components based on
specific workload demands. Efficiently handle
prediction traffic spikes without costly infrastructure
overprovisioning.

Enhanced Resilience
Effectively isolate failures to specific services without
system-wide impacts. Critical ML pipelines continue
functioning uninterrupted despite localized outages or
failures.

Technology Flexibility
Leverage optimal languages and frameworks tailored to
specific ML workloads. Seamlessly integrate Python for
model development with Go for high-performance
inference APIs.

Accelerated Deployment
Deploy and update models independently of other
system components. Implement streamlined CI/CD
pipelines for rapid experimentation and faster time-to-
production cycles.

Key Challenges to Address
Data Consistency

Ensuring synchronized and reliable data propagation
across distributed microservices

Communication Overhead
Managing latency and bandwidth constraints from
inter-service API callsSystem Complexity

Navigating increased architectural complexity for
monitoring, debugging, and deployment Resource Management

Optimizing infrastructure utilization while balancing
cost and performance across distributed services

Communication Patterns
Synchronous REST/gRPC

Optimized for real-time inference
workflows requiring immediate

responses with minimal latency and
strong consistency guarantees

Event Streaming
Specialized for continuous data
pipelines processing high-volume
model inputs with fault-tolerance and
exactly-once delivery semantics

Message Queues
Designed for effectively decoupling
ML training workloads from inference
services, enabling independent
scaling and asynchronous processing

Shared Data Stores
Essential for distributing consistent

feature representations across
training and serving environments

while maintaining version
compatibility

ML-Specific Deployment Approaches
Container Orchestration
Orchestrate ML microservices with
Kubernetes for intelligent scaling
and fault-tolerant operations.

Efficient GPU resource allocation
and scheduling

Streamlined model A/B testing
and canary deployments

Serverless Functions
Implement AWS Lambda or Google
Cloud Functions for on-demand,
scalable inference endpoints.

Eliminates infrastructure
management overhead

Optimizes costs through precise
pay-per-execution billing

Specialized ML Platforms

Advanced auto-scaling based on
inference demand

Comprehensive model
versioning and lifecycle
management

Harness KServe (KFServing earlier),
or SageMaker for framework-
optimized model serving and
performance.

Observability & Monitoring

Model Performance
Metrics
Continuously monitor
prediction accuracy,
inference latency, and
request throughput across
distributed services.
Implement automated drift
detection alerts to maintain
model reliability.

Distributed Tracing
Implement end-to-end
request tracing throughout
your ML pipeline
components. Pinpoint
performance bottlenecks
and latency issues in critical
prediction paths.

Resource Utilization
Proactively track compute,
memory, and GPU
consumption patterns. Fine-
tune resource allocation to
optimize cost-efficiency
without sacrificing ML
workload performance.

Centralized Logging
Establish unified log
aggregation across all
microservices in your ML
ecosystem. Enable rapid
troubleshooting by
correlating model prediction
errors with underlying
service issues.

Emerging Trends &
Technologies

Service Mesh
Istio and Linkerd revolutionizing ML service communication
with zero-trust security and fault tolerance while requiring
minimal code implementation.

AI-Driven Orchestration
Intelligent microservice optimization that dynamically scales
and positions resources based on predicted ML workload
patterns and computational demands.

eBPF & WebAssembly
Next-generation technologies dramatically minimizing
latency and overhead for high-throughput cross-service ML
data operations and feature transformations.

Edge ML Microservices
Sophisticated inference services deployed at network edges,
reducing latency by 90% while enabling real-time processing
for IoT and mobile ML applications.

Legacy monolithic ML pipeline suffering
from significant scaling bottlenecks
and deployment delays

Infrastructure Modernization

Results

Continuous Evolution

a ea ays for Real-World Implementationw T k

Identify Service Decomposition
Strategically partition the system
into independent microservices
aligned with key ML pipeline stages

Orchestrate containerized
deployment on Kubernetes or
Docker(Swarm?) with dynamic
resource allocation and auto- scaling

Measure reduction in inference
latency, throughput improvement, and
enjoy enhanced system
resilience

Observability Improvements

!"#$%& (")*+,$-."' /%)-*%+-)0 1-*2
'-3*+-45*"' *+,(-)0 ,(+%33 ,$$ 67
/-(+%3"+8-("3 9%+ +",$:*-/"
#"+9%+/,)(" -)3-02*3

Establish CI/CD pipelines to enable
improved cadence for model
updates.

 Thank you

