
Observability first Kafka: 
Visibility at scale
Kafka is the backbone of modern data streaming. Issues like broker 
crashes must be detected early to prevent downtime.

We'll explore how the MELT stack (Metrics, Events, Logs, Traces) 
provides complete visibility into Kafka systems.

Abhishek Walia



Why Kafka Needs 
Observability

Critical Infrastructure
Kafka serves as the backbone for data streaming in modern 
systems.

Early Detection
Issues like broker crashes and replication lag must be caught early.

Performance Insights
Engineers need visibility into reliability and performance metrics.

Fast Troubleshooting
Observability enables quick resolution when problems occur.



The MELT Stack Overview
Complete Observability
360° view of system behavior

Traces
End-to-end request flows

Logs
Detailed activity records

Events
Discrete state changes

Metrics
Numerical measurements



Open-Source Toolchain

Prometheus
Collects metrics and 
manages alerts

OpenTelemetry
Provides 
instrumentation 
across all signals

Grafana
Visualizes metrics, 
logs, and traces



Metrics: System Health 
Indicators

What Are Metrics?
Numerical measurements 
indicating system health and 
performance. Examples 
include CPU utilization, 
request latency, and error 
rates.

Why They Matter
Metrics provide a high-level 
overview of system state. 
They enable real-time 
anomaly detection through 
alerts.

For Kafka
Key metrics include throughput, consumer lag, broker resource 
usage, and replication health.



Events: Context for 
Changes

What Are Events?
Discrete state changes or 
significant actions occurring 
at a point in time. Examples 
include deployments, 
crashes, and configuration 
changes.

Why They Matter
Events correlate system 
changes with observed 
issues. They provide context 
to metric spikes or errors.

For Kafka
Important events include broker deployments, scaling actions, 
and consumer group rebalances.



Logs: Detailed Activity Records
What Are Logs?
Timestamped, detailed records of 
system activities. Examples 
include server logs, error stack 
traces, and authentication failures.

Why They Matter
Logs offer granular insights into 
what happened and when. They're 
essential for debugging incidents.

For Kafka
Broker logs show failures, 
controller elections, client 
disconnections, and processing 
exceptions.



Traces: End-to-End Request Flows
What Are Traces?
End-to-end records of operations 
as they propagate through 
distributed systems. Example: a 
request traveling through multiple 
microservices.

Why They Matter
Traces link components of a 
workflow. They help identify 
bottlenecks by measuring 
transaction flow.

For Kafka
Traces show message paths from 
producer through broker to 
consumer, revealing processing 
delays.



Why Use All Four MELT Signals
Complementary Perspectives
Each telemetry type provides a different view of system 
behavior.

Metrics detect anomalies in real-time

Events tie anomalies to specific changes

Logs provide deep details for debugging

Traces show end-to-end request paths

Complete Picture
Using all four signals together creates a 360° view that 
single-point monitoring can't achieve.

Example: A latency spike (metric) correlates with a broker 
restart (event), with details in logs and the exact slow 
component visible in traces.



Kafka Metrics: Observability Goals
Throughput
Messages per second published or consumed

Consumer Lag
Delay between production and consumption

Resource Usage
CPU, memory, and disk I/O on brokers

Request Latency
Time to serve produce/fetch requests



Kafka Metrics: More Key 
Indicators

Replication Health
Number of under-replicated partitions

Partition Distribution
Leader counts per broker

Error Rates
Failed requests and other error indicators

Network Utilization
Bytes in/out across the cluster



Kafka Metrics: 
Instrumentation

Enable JMX Metrics
Apache Kafka exposes metrics via Java Management Extensions 
(JMX) on both brokers and clients.

Deploy Metrics Scraper
Use Prometheus JMX exporter or OpenTelemetry JMX 
collector to pull metrics from brokers.

Collect Client Metrics
With Kafka 3.7+ (KIP-714), brokers can centrally collect 
standardized client metrics.



Kafka Metrics: Implementation Example
Kafka
Brokers & clients expose metrics

OpenTelemetry
Collector receives and processes metrics

Prometheus
Stores time-series data

Grafana
Visualizes metrics on dashboards



Kafka Events: Observability Goals
Infrastructure Changes
Broker deployments, restarts, or failures

Scaling Actions
Adding/removing brokers, partition reassignments

Configuration Changes
Topic configuration updates, ACL changes

Consumer Group Events
Rebalances, new consumers joining



Kafka Events: Why They Matter
Context for Anomalies
Events explain why metrics might change suddenly.

Example: If throughput dips at 3:00 PM, an event log 
might show a broker was taken down for maintenance.

Correlation Benefits
Faster root cause analysis

Clear timeline of changes

Reduced troubleshooting time

Better understanding of cause-effect



Kafka Events: 
Instrumentation

Automate Event Logging
Add hooks in deployment scripts or Kubernetes operators to log 
events when actions occur.

Leverage Kafka's Signals
Parse Kafka logs for specific keywords indicating important 
state changes.

Include External Events
Capture OS/hardware events or network issues that might 
impact Kafka performance.



Kafka Events: 
Implementation Example

Event Sources
Deployment tools, Kafka logs, infrastructure changes

2 OpenTelemetry Collector
Captures and forwards event data

Grafana Loki
Stores event logs for querying

Grafana Annotations
Displays events as markers on metric graphs



Kafka Logs: Observability Goals
Detailed Troubleshooting
Logs contain rich details about 
internal state and errors that 
metrics alone can't explain.

Error Investigation
Logs show when brokers 
experience failures, when 
exceptions occur, or when clients 
disconnect.

Root Cause Analysis
Centralized access to broker logs 
helps identify specific errors 
during failures.



Kafka Logs: What They Reveal

Error Details
Stack traces and exception messages 
that explain failures

State Changes
Controller elections, partition 
movements, and leadership changes

Client Activity
Connection/disconnection events and 
client-specific issues



Kafka Logs: 
Instrumentation

Configure High-Quality Logs
Update log4j.properties to set appropriate log levels and use 
structured formats like JSON.

Deploy Log Shipping
Use agents like Filebeat or OpenTelemetry Collector to stream 
logs to a central location.

Establish Retention Strategy
Define how long logs are kept and how they're indexed for 
efficient querying.



Kafka Logs: 
Implementation Example

Kafka Log Files
Structured logs from brokers

2 OpenTelemetry Collector
Tails files and adds metadata

3 Grafana Loki
Stores and indexes logs

Grafana UI
Search and filter logs



Kafka Traces: Observability 
Goals

End-to-End Visibility
Follow messages through the entire system from producer to consumer.

Latency Measurement
See how long each step takes in the message journey.

Bottleneck Identification
Pinpoint where delays occur in the processing pipeline.

Failure Localization
Determine exactly where messages get lost or errors happen.



Kafka Traces: Message Journey
Producer
Application sends message

Kafka Broker
Message queued and stored

Consumer
Message received and processed



Kafka Traces: 
Instrumentation

Trace Context Propagation
Producers attach trace identifiers to message headers for 
consumers to continue the trace.

Span Creation
Create spans for "send" and "receive/process" operations to 
model the message transfer.

Auto-Instrumentation
Use OpenTelemetry Agents to help generate spans.



Kafka Traces: Implementation Example
Instrumented Clients
Kafka producers and consumers with OpenTelemetry

OpenTelemetry Collector
Receives spans via OTLP protocol

Jaeger, ZipKin or similar
Stores and processes trace data

Grafana
Visualizes traces with span details



Trace Example: Message 
Processing

Producer Send
5ms - Message published to Kafka

Kafka Queue Time
50ms - Message waiting in broker

Consumer Receive
10ms - Message pulled by consumer

Processing
200ms - Business logic execution



Bringing MELT Together

Metrics
Show symptoms like rising latencies 

or dropping throughput

Events
Provide context for changes (e.g., 
"broker 2 restarted")

Logs
Offer detailed error messages and 
stack traces

Traces
Follow data journeys to identify 

slow components



Practical Implementation
OpenTelemetry
Unified way to instrument metrics, 
logs, and traces in your Kafka 
ecosystem.

Vendor-neutral format

Single agent for all signals

Consistent instrumentation

Prometheus
Battle-tested metrics collection and 
alerting for Kafka's JMX metrics.

Powerful query language

Robust alerting

Time-series database

Grafana
Visualization platform that ties 
everything together in one interface.

Unified dashboards

Cross-signal correlation

Alert management



Benefits of MELT for Kafka
60%

Faster Detection
Reduction in time to detect issues

75%
Quicker Analysis

Reduction in root-cause analysis time

40%
Fewer Incidents

Reduction in production incidents

90%
More Confidence

Engineers report higher confidence in production systems



Key Takeaways
Synergy of Signals
The combination of MELT is far more powerful than 
any pillar alone.

Open-Source Tooling
Leverage existing tools like OpenTelemetry, 
Prometheus, and Grafana.

Complete Visibility
Gain deep insight into Kafka's behavior at runtime.

Production Confidence
Run Kafka at scale with greater reliability and 
performance.



Helpful Resources
Be sure to check out this great pre-built observability stack for Kafka:

https://github.com/confluentinc/jmx-monitoring-stacks

 

https://github.com/confluentinc/jmx-monitoring-stacks
https://github.com/confluentinc/jmx-monitoring-stacks


Broker Metrics
Description Metric

Controller Event queue time kafka.controller:type=ControllerEventManager,name=EventQueueTimeMs

Byte in rate from clients kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,topic=([-.\w]+)

Byte in rate from other brokers kafka.server:type=BrokerTopicMetrics,name=ReplicationBytesInPerSec,topic=([-.\w]+)

Requests Error rate kafka.network:type=RequestMetrics,name=ErrorsPerSec,request=([-.\w]+),error=([-.\w]+)

Log flush rate and time kafka.log:type=LogFlushStats,name=LogFlushRateAndTimeMs

Leader election rate kafka.controller:type=ControllerStats,name=LeaderElectionRateAndTimeMs

Is controller active on broker kafka.controller:type=KafkaController,name=ActiveControllerCount

Num of under replicated partitions (|ISR| < |all 
replicas|)

kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions

Num of under minIsr partitions (|ISR| < 
min.insync.replicas)

kafka.server:type=ReplicaManager,name=UnderMinIsrPartitionCount

Partition counts kafka.server:type=ReplicaManager,name=PartitionCount

The average fraction of time the network 
processors are idle

kafka.network:type=SocketServer,name=NetworkProcessorAvgIdlePercent

Number of reassigning partitions kafka.server:type=ReplicaManager,name=ReassigningPartitions

Size of a partition on disk (in bytes) kafka.log:type=Log,name=Size,topic=([-.\w]+),partition=([0-9]+)



Common Client Metrics
Description Metric

Total new connections 
established in the window.

kafka.[producer|consumer|connect]:type=[producer|consumer|connect]-
metrics,name=connection-creation-rate,client-id=([-.\w]+)

The average number of network 
operations (reads or writes) on all 
connections per second.

kafka.[producer|consumer|connect]:type=[producer|consumer|connect]-
metrics,name=network-io-rate,client-id=([-.\w]+)

The average number of outgoing 
bytes sent per second to all 
servers.

kafka.[producer|consumer|connect]:type=[producer|consumer|connect]-
metrics,name=outgoing-byte-rate,client-id=([-.\w]+)

Bytes/second read off all sockets. kafka.[producer|consumer|connect]:type=[producer|consumer|connect]-
metrics,name=incoming-byte-rate,client-id=([-.\w]+)

The fraction of time the I/O 
thread spent waiting.

kafka.[producer|consumer|connect]:type=[producer|consumer|connect]-
metrics,name=io-wait-ratio,client-id=([-.\w]+)



Producer Metrics
Description Metric

The total amount of buffer memory that is 
not being used.

kafka.producer:type=producer-metrics,name=buffer-available-bytes,client-id=([-.\w]+)

The fraction of time an appender waits for 
space allocation.

kafka.producer:type=producer-metrics,name=bufferpool-wait-time,client-id=([-.\w]+)

The average number of bytes sent per 
partition per-request.

kafka.producer:type=producer-metrics,name=batch-size-avg,client-id=([-.\w]+)

The average compression rate of record 
batches, defined as the average ratio of the 
compressed batch size over the 
uncompressed size.

kafka.producer:type=producer-metrics,name=compression-rate-avg,client-id=([-.\w]+)

The average time in ms a request was 
throttled by a broker

kafka.producer:type=producer-metrics,name=produce-throttle-time-avg,client-id=([-.\w]+)

The average time in ms record batches 
spent in the send buffer.

kafka.producer:type=producer-metrics,name=record-queue-time-avg,client-id=([-.\w]+)

The average number of records sent per 
second.

kafka.producer:type=producer-metrics,name=record-send-rate,client-id=([-.\w]+)



Consumer Metrics
Description Metric

The average delay between invocations of poll(). kafka.consumer:type=consumer-metrics,name=time-between-poll-avg,client-id=([-.\w]+)

The average fraction of time the consumer's poll() 
is idle as opposed to waiting for the user code to 
process records.

kafka.consumer:type=consumer-metrics,name=poll-idle-ratio-avg,client-id=([-.\w]+)

The number of commit calls per second kafka.consumer:type=consumer-coordinator-metrics,name=commit-rate,client-id=([-.\w]+)

The number of partitions currently assigned to this 
consumer 

kafka.consumer:type=consumer-coordinator-metrics,name=assigned-partitions,client-id=([-.\w]+)

The average time taken for a group rejoin kafka.consumer:type=consumer-coordinator-metrics,name=join-time-avg,client-id=([-.\w]+)

The number of group joins per second kafka.consumer:type=consumer-coordinator-metrics,name=join-rate,client-id=([-.\w]+)

The average time taken for a group rebalance kafka.consumer:type=consumer-coordinator-metrics,name=rebalance-latency-avg,client-id=([-.\w]+)

The number of group rebalance participated per 
hour

kafka.consumer:type=consumer-coordinator-metrics,name=rebalance-rate-per-hour,client-id=([-.\w]+)

The number of failed group rebalance event per 
hour

kafka.consumer:type=consumer-coordinator-metrics,name=failed-rebalance-rate-per-hour,client-id=([-.\w]+)

The number of seconds since the last rebalance 
event

kafka.consumer:type=consumer-coordinator-metrics,name=last-rebalance-seconds-ago,client-id=([-.\w]+)

The average number of bytes consumed per 
second

kafka.consumer:type=consumer-fetch-manager-metrics,name=bytes-consumed-rate,client-id=([-.\w]+)

The average number of bytes fetched per request kafka.consumer:type=consumer-fetch-manager-metrics,name=fetch-size-avg,client-id=([-.\w]+)

The average lag of the partition kafka.consumer:type=consumer-fetch-manager-metrics,name=records-lag-avg,partition=([-.\w]+),topic=([-.\w]+),client-id=
([-.\w]+)



Thank you! 


