Adam Furmanek

https://www.metisdata.io/

https://discord.gg/9TcgEgfKfR
https://discord.gg/9TcgEgfKfR
https://github.com/metis-data
https://github.com/metis-data
https://www.linkedin.com/company/metisdata/
https://www.linkedin.com/company/metisdata/
https://twitter.com/metisdata
https://twitter.com/metisdata
https://www.metisdata.io
https://www.metisdata.io

Where we used to be...

Where we are now

Conway’s Law

Communication

Shift Left

https://katalon.com/resources-center/blog/shift-left-testing-approach

- Self Service

SERVICE

Dashboards

Lots of data.
Lack of information.
Lots of signals.

Lack of clarity.

No way to understand the big picture.

https://www.eginnovations.com/blog/monitoring-dashboards-it-performance;

/

Problems with databases

Slow queries.
Code changes

Inaccurate statistics.

Incompatible changes in schema.

Bugs.

Missing indexes.

Query changes Schema changes

Data quality.
Configuration.

Locks.

Slow queries

const user = repository.get("user”
where("user.id = 123")
Jdeftloin("user.details”, "user_details_table")
deftloin{"user.pages", "pages _table")
deftloin{"user.texts", "texts table™)
Jdeftloin("user.questions”, "guestions_table")
Jdeftloin("user.reports™, "reports_table")
Ldeftloin{"user.location”, "location_table™)
Jdeftloin("user.peers”, "peers_table")
getina();

return user;

This reads ~300k rows and runs for 25 seconds.

SELECT *
users AS user

FROM
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT

JOIN
JOIN
JOIN
JOIN
JOIN
JOIN

user_details_table AS detail OM detail.user_id = user.id
pages_table AS page OM page.user_id = user.id

texts_table AS text ON text.user_id = user.id
questions_table AS question ON question.user_id = user.id
reports_table AS report ON report.user_id = wser.id
location_table AS location on location.user_id = user.id

peers_table AS peer ON peer.user_id = user.id
WHERE user.id = 7123*

Slow queries

const userQuery = repository.get("user”).where("user.id = 123") SELECT *
const user = userQuery().getOne(); FROM users AS user

. WHERE user.id = '123'
const details = userQuery()

deftJoin("user.details”, "user_details_table") SELECT #
-getlne(); FROM users AS user
const pages = userQuery() LEFT JOIN user_details_table AS detail ON detail.user_id-user.id
.leftloin("user.pages”, "pages_table") WHERE user.id = '123°
.getine();
8 s SELECT *

const texts = userQuery()
deftloin("user.texts"”, "texts_table™)

FROM users AS user
LEFT JOIN pages_table AS page OM page.user_id=user.id

-getone(}; WHERE user.id = '123'
const guestions = userQuery()

.leftJoin("user.questions™, "questions_table") SELECT *

.getOna(); FROM users AS user

LEFT J0OIN texts_table AS text ON text.user_id=user.id

const reports = userQuery() WHERE user.id o '123"

JleftloinAndSelect("user.reports”, “"reports_table™)

.getone(); SELECT *

const location = userQuery() FROM users AS user
.leftJoin("user.location”, "location_table™) LEFT JOIM gquestions_table AS question ON question.user_id=user.id
.getone(); WHERE user.id = '123'

const peers = userQuery()

*
.leftloin("user.peers”, "peers_table") SELECT

FROM users AS user

-getone(); LEFT JOIN reports_table AS report ON report.user_id=user.id
return { WHERE user.id = '123"
..user,
.details, SELECT *
.pages, FROM users AS user
. .texts, LEFT J0OIN location_table A5 location ON location.user_id=user.locationId
; WHERE user.id = '123'
.questions,
.reports, SELECT *
... location FROM users AS user
ssapeers LEFT JOIN peers_table AS peer ON peer.user_id=user.clientId

1: WHERE user.id = '123'

-- F925812 rows
SELECT COUNT(*)

SIOW q ueries FROM boarding_passes

13 seconds

WITH cte_performance AS

SELECT *, MDS(MDS(ticket_no)) AS double_hash
FROM boarding_passes

)

SELECT COUNT(*)

FROM cte_performance AS C1

JOIN cte_performance AS C2 ON CZ.ticket_no = Cl.ticket_no AND C2Z2.flight_id
JOIN cte_performance A5 C3 ON C3.ticket_no = Cl.ticket_no AND C3.flight_id

Cl.flight_did AND C2.boarding_no = Cl.boarding_no
C1.flight_id AND C3.boarding_no = Cl.boarding_no

WHERE
Cl.double_hash = '525acB6l8982928e+37b34aa56a45cda@s’
AND C2.double_hash = '525acBl@9582028ef37b34aat6a45cd86"
AND C3.double_hash = '525actl@9820928ef37b34aat6ad5cdas!
-- 8 seconds

SELECT COUNT(*)

FROM boarding_passes A5 C1

J0IN boarding_passes A% C2 ON C2.ticket_no = Cl.ticket_no AND C2.flight_id
J0IN boarding_passes A5 C3 ON C3.ticket_no = Cl.ticket_no AND C3.flight_id

WHERE

C1.flight_id AND CZ.boarding_no Cl.boarding_no
C1.flight_id AND C3.boarding_no = Cl.boarding_no

MDS(MDS(Cl.ticket_no)) = '525acEl@f82928ef37b34aa56a45cdas’
AND MDEEMDS(CE.tlcket_nD}} = 5253:615982923&53?h34aaq634qcdEE'
AND MDS(MDS({C3.ticket_no)) 525achblBf82928er37b3daab0ad5cdin”’

Incompatible changes in schema

Adding a column

May cause issues when we use SELECT *
May cause table reorganization because of lack of space (and outage in result)

Dropping a column
Nearly never safe
Altering the column type

May change the representation, this depends on the ORM and the driver
May require some extensions installed to the database engine
May cause table reorganization

Missing Indexes

May cause scanning whole table instead of Index

getting rows directly. , . _
Created automatically with a primary key

May cause using inefficient JOIN strategy May be created on demand
(nested loop instead of hash join or merge May store one or more columns
join). Stores data in an order, so it’s easy to do

binary search
Some index types

B-Tree

Hash index

GIS-based (for geolocation)
GIN (inverted indexes)

Too many indexes

Indexes are not free

They store data in a specific order that
needs to be maintained over time
They need to copy the data on the
side to build additional dictionaries
Updating one row may cause an
update in multiple indexes

Do not index blindly! Evaluate if the
performance increases

ORM challenges - n+1 selects

Problem: Aircrafts

aircrafts = aircrafts.load()};

for{aircraft in aircrafts) { # aircraft_code
seatsCount = aircraft.sesats.size; *moadel

h * range

This generates:
SELECT * FROM aircrafts;
SELECT * FROM seats WHERE aircraft_code

SELECT * FROM seats WHERE aircraft_code
SELECT * FROM seats WHERE aircraft_code

nomn
(A L R]

Seats
However, this could be done in one query:

aircraft_code

SELECT * FROM aircrafts # seat_no
LEFT JOIN seats ON seats.aircraft_code = aircrafts.aircraft_code * fare conditions

ORM challenges - joins

Normalization leads to multiple joins
that may be slow.

We may need to decompose these
queries manually.

We may need to rework our domain
model.

We may need to change bounded
contexts.

SELECT *
users AS user

FROM
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT

JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN

const user = repository.get("user")
.where{"user.id = 123")
JJdeftloin("user.details™, "user_details table™)
Jdeftloin{"user.pages", "pages table™)
deftloin(Muser.texts", "texts table™)
Jdeftloin{"user.questions”, "questions table")
Jdeftloin{"user.reports”, "reports_tabls")
Jdeftloin("user.location"”, "location table")
Jdeftloin{"user.peers"”, "peers _table™)
.getlne();

return user;

user_details_table AS detail ON detail.user_id=user.id
pages_table AS page ON page.user_id=user.id

texts_table AS text ON text.user_id=user.id

questions_table AS guestion OM question.user_id=user.id
reports_table AS report ON report.user_id=user.id
location_table AS location OM location.user_id=user.locationld
peers_tahle AS peer ON peer.user_id=user.clientId

WHERE user.id = '123"

ORM challenges - lack of visibility

Transaction isolation level

Each transaction has a level (SERIALIZABLE,
READ COMMITTED, etc.)

What's the default?

Can you change it?

Transaction scope

When is transaction started? When does it end?

Do you have nested transactions?

Commit/rollback

Who controls how things are committed and

rolled back?
What happens in case of errors?

Caching

Is the data cached?
Does it work with parallel connections?
What about sticky sessions/

Pooling

Do you have a connection pool?
Will it scale well?
How often do you recycle the connection?

Query hints

How do you make sure indexes are used?
How do you configure join strategy?

ORM challenges - migrations

How do you define your migrations

SQL files with CREATE TABLE...
Code first with ORM model
Or maybe you already have the database?

How do you track which things were executed

Keep another table with history
Make sure changes are idempotent
You run them manually

How do you roll back

Up + Down methods

What if there are multiple
heterogeneous applications?

What if your ORM creates tables
automatically?

How do you deal with migrations in unit
tests?

How do you fix errors which you spot
later on?

Tests - do they work?

Load testing?

Cost
Load test takes hours to complete (think caching, tiered compilation, etc.)
Data distribution and cardinality

You can't test your EU stack with the data from the USA
What about smaller countries?

Hardware and environment

GPUs are expensive and not very available
Edge computing? Custom hardware?
Do you pay for it 24/7?

Data anonymity

What about SSN? How do you anonymize it in pre-production?

Nonoptimal Configuration

The Right Solutions

Differences between regions?
Trigram or JSONB indexes

Vector Database vs pgvector Multi—tenancy?
Impedance mismatch .

The Solutions Done Right Old versions or cheaper editions?

Maintenance windows Can we change the database?

Vacuuming
Defragmentation

Load handling

Scalability, hardware, peak hours

Know the context to find the root cause

Telemetry

Ability to collect data - logs, metrics,
traces.

Visibility

Seeing “what” inside the system.

Observability

Deep dive into technical details for root
cause analysis.

Application Performance
Management

High-level end-to-end system health.

Monitoring and Observability

Monitoring Observability

Alerts about errors.

Often swamps with raw data,
metrics, charts, graphs.

Often application-agnostic,
focuses on infrastructure.

Rarely connects the dots between
various systemes.

Shows root causes of the errors.
Provides semantic understanding
of what is happening.
Understands the characteristics of
the application.

Makes the interconnection clear
and visible.

Executing the query
P a rS e r Query is parsed into an Abstract Syntax Tree (AST).
This allows to manipulate the query mechanically.
R eW r i-te r Query is rewritten to a standard form.
This makes processing the query easier.

P I a n n e r A plan is prepared. It contains details of how to read
data, how to join tables, how to filter rows, etc.

EX e C u t O r Finally, the query is physically executed.

Anatomy of an SQL query

EXPLAIN
SELECT *
flights AS ¥

FROM
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT
LEFT

JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN

aircratts_data AS ad ON ad.aircraft_code = f.ailrcraft_code

seats AS = ON s.aircratt_code = f.aircraft_code
ticket flights AS tFf ON tf.flight_id = F.flight_id
boarding_passes AS bp ON bp.flight_id = f.flight_id
tickets AS t ON t.ticket_no = tf.ticket_no

bookings AS b ON b.book_ref = t.book_ref

airports AS a ON a.airport_code = f.departure_airport

WHERE f.flight_id = 1876

QUERY PLAN

Mested Loop Left Join (cost=6.92..245675.96 rows=12012 width=412)
Join Filter: (bp.flight_id = f.flight_id)

-» Mested Loop Left Join (cost=1.28..244888.01 rows=77 width=327)
Join Filter: (z.aircraft_code = f.aircraft_code)
-» Nested Loop Left Join (cost=1.28..244849.88 rows=1 width=372)
Join Filter: {(ml.airport_code = f.departure_airport)
- Mested Loop Left Join (cost=1.28..244792.02 rows=1 width=273)
-» MNested Loop Left Join (cost=0.85..244791.55 rows=1 width=252)
-+ Mested Loop Left Join (cost=0.42..244783.10 rows=1 width=148)
Join Filter: (tf.flight_id = f.flight_id)
-» Mested Loop Left Join (cost=0.42..9.64 rows=1 width=115)

Join Filter: (ad.aircraft_code = f.aircraft_code)

- Index 5can using flights_pkey on flights f (cost=042..8.44 rows=1 width=63)

Index Cond: (flight_id = 1676)
-» Seq Scan on aircrafts_data ad (cost=0.00..1.09 rows=9 width=52)
-» Seq Scan on ticket_flights tf (cost=0.00..244772.15 rows=103 width=33)
Filter: (flight_id = 1676)
-» Index Scan using tickets_pkey on tickets t (cost=0.43..8.45 rows=1 width=104)
Index Cond: (ticket_no = tf.ticket_no)
-» Index Scan using bookings_pkey on bookings b (cost=0.43..0.47 rows=1 width=21)
Index Cond: (book_ref = t.book_ref}
-» Seq Scan on airperts_data ml (cost=0.00..56.36 rows=104 width=99)
-» Seq Scan on seats s (cost=0.00..21.39 rows=1339 width=15)
-=» Materialize (cost=5.64..608.16 rows=156 width=23)
-» Bitmap Heap 5can on boarding_passes bp (cost=5.64..607.38 rows=156 width=25)
Recheck Cend: (flight_id = 1676)

-» Bitmap Index 5can on bearding_passes_flight_id_seat_no_key (cost=0.00..5.60 rows=156 width=0)

Index Cond: (flight_id = 1676)

Anatomy of an SQL query

QUERY PLAN
Each plan consists of nodes. [vested Loop Lefioil) (cost=6.89.)75713.37 rows=11704 width=411) e —
. . 1 Nested Loop Left Join] =1.23..1?4945.z1l =77 width=336
Nodes have costs associated with them. ssted Loop Left Join (cot st <=

Join Filter: (s.aircraft_code = f.aircraft_code)
-> Nested Loop Left Join (cost=1.28..174907.08 rows=1 width=371)}

Cost is an arbitrary measure of “how hard it ijhmmm[f.departure_airport)
. ” - Nested Loop Left Join (fost=1.28..174849.22 rows=1 width=272) <
Is to get the WhOIe dataset -> Nested Loop Left Join (cost=0.85..174848.73 rows=1 width=251)
- Mested Loop Left Join (cost=0.42..174840,30 rows=1 width=147)
Most important parts are: Join Filter: (tf.flight_id = fflight_id)
-» MNested Loop Left Join (cost=0.42..9.64 rows=1 width=113)

Join Filter: (ad.aircraft_code = f.aircraft_code)

-> Index Scan using flights_pkey on flights f (cost=0.42..8.44 rows=1 width=63)

Scans - Sequential Scan Index Scan, index-

Only scan Index Cond: (flight_id = 1676)

jOinS _ Nested LOOp, HaSh, Merge -» Seq Scan oln alrcrlaf'ts_data ad (cost=0.00..1.09 rows:‘}u\rldtl'j:SP_]
L. Lo -» Seq Scan on ticket_flights tf (cost=0.00..174829.35 rows=103 width=32)

Others: Limit, Materialize, Sort Filter: (flight_id = 1676)

- Index Scan using tickets_pkey on tickets t (cost=043..8.45 rows=1 width=104)
Index Cond: (ticket_no = tf.ticket_no)
-= Index Scan using bookings_pkey on bookings b (cost=0.43..047 rows=1 width=21)

Index Cond: (book_ref = t.book r
. = Seq Scan on airports_data ml |(cost=0.00..56.56 rpws=104 width=99)
https://www.pgmustard.com/docs/explain el 5] t

-» Seq Scan on seats s (cost=0.00..21.39 rows=1339 width=15)
-» Materialize (cost=5.61..592.98 rows=132 width=23)

-=|Bitmap Heap 5can pn boarding_passes bp (cost=5.61..592.22 rows=152 width=23)
Recheck Cond: (flight id = 1676)

> Bitmap Index Scan ¢n bearding_passes_flight_id_seat_no_key (cost=0,00..3.57 rows=152 width=0)
Index Cond: (flight_id = 1676)

Observability

We need:

Logs
Traces
Metrics

We face multiple challenges:

Heterogeneous applications
Correlations
Extensibility

Observability

Prevent bad code
from reaching
production

Understand what's
happening inside
the application

Apply stats from
production

Database Guardrails

Monitor the
system end-to-
end

Understand the
application
characteristics

Turn raw data into
actual knowledge

Troubleshoot
automatically by
connecting the dots

Focus on the root
cause, not on the
manifestation

Work across stages

Be proactive and push to the left!

Waiting for tickets from customers is expensive.
Load tests are slow, too late, and too expensive.

Issues need to be identified early and automatically.

Never go blind
again!

Metis

Source code
integration

On-demand
analysis

We got all your
bases covered!

Database
observability

Pull Request
analysis

Query and
database activity
visibility

summary

Database may

break
e Bugs
ORM quirks
Database
inefficiency

You need to be Metis covers all of
proactive that
e Load tests are o App
too late integration
e Constant e Pull requests

monitoring is o
needed o

Observability
Safety

Q&A

https://www.metisdata.io/

https://discord.gg/9TcgEgfKfR
https://discord.gg/9TcgEgfKfR
https://github.com/metis-data
https://github.com/metis-data
https://www.linkedin.com/company/metisdata/
https://www.linkedin.com/company/metisdata/
https://twitter.com/metisdata
https://twitter.com/metisdata
https://www.metisdata.io
https://www.metisdata.io

