
https://www.metisdata.io/

Lessons Learned From 
Maintaining SDK For 
Three Years

Adam Furmanek

https://discord.gg/9TcgEgfKfR
https://discord.gg/9TcgEgfKfR
https://github.com/metis-data
https://github.com/metis-data
https://www.linkedin.com/company/metisdata/
https://www.linkedin.com/company/metisdata/
https://twitter.com/metisdata
https://twitter.com/metisdata
https://www.metisdata.io
https://www.metisdata.io


What We Do?



Goal

Metis needs:

● REST
● SQL query
● Execution 

plan

Applications:

● Web APIs
● Local or in the 

cloud
● Modern
● With CI/CD

Tenets:

● Easy to use
● One-time 

integration
● No code 

changes
● No 

dependencies



How It Works
What:
● What interaction happened (API X 

was called)
● What query was executed (with 

parameters)
● What was the execution plan

How:
● Use OpenTelemetry to capture the 

interactions
● Extract details from REST and from SQL
● Capture the query parameters
● Ask for the execution plan (with EXPLAIN

keyword)
● Send everything to Metis



Three Different Approaches

SDK per tech stack
● One library 

for each tech 
stack

● No database 
changes

Reading from the 
database
● Library for 

each tech 
stack

● Changes to 
the database

● Agent

Moving the 
ownership
● No specific 

library
● No changes to 

the database
● Agent



SDK Per Tech Stack





First Approach
Pros:
● Easy to install - just one command
● Integrates with the language
● No changes to the database
● Nearly no changes to the application 

code
● Works with automated tests (most of 

the time)
● Captures all the queries
● Can be easily disabled for production

Cons:
● No way to reuse the code between languages 

or libraries
● Differences between versions of 

dependencies
● Weird integrations with OpenTelemetry (lack 

of parameter values)
● Hard to correlate REST and SQL
● Problems with testing frameworks



Reading From The Database





Second Approach
Pros:
● Easy to install - just one command
● Integrates with the language
● Nearly no changes to the application 

code
● Works with automated tests (most of 

the time)
● Captures all the queries
● Can be easily disabled for production

Cons:
● Database must be reconfigured
● Hard to capture ephemeral databases (think 

of TestContainers)
● Difficult query stamping
● Very expensive
● No way to reuse the code between languages 

or libraries
● Differences between versions of 

dependencies
● Hard to correlate REST and SQL
● Problems with testing frameworks



Moving The Ownership





Third Approach
Pros:
● No changes to the application code*
● No changes to the database
● Integrates with the language
● Captures all the queries*
● Can be easily disabled for production
● We don’t own it!

Cons:
● Sometimes requires changes to the 

application code
● Not all libraries support auto-instrumentation
● Sometimes misses the queries or doesn’t 

capture parameter values
● Hard to correlate REST and SQL
● Problems with testing frameworks



What We Learned

Uniform 
Functionality

Versions 
Management

Diverse 
Languages



Uniform Functionality



Uniform Functionality
● Languages are different

○ Static typing vs dynamic typing
○ Generics vs macros
○ Classes vs prototypes

● Features are nice but hard to port 
between technologies

● Idiomatic code vs reusing the 
implementation

● Can you represent structures uniformly 
between languages?

● Can you use the same protocols?
● Are there any implementation differences?
● How do you synchronize changes between 

languages?
● How can you introduce optional fields and 

evolve your schemas?
● How do you write documentation between 

languages?



JSON vs gRPC
JSON:
● JSON standard vs implementations
● Interpretation issues
● HTTP handling

gRPC:
● Single definition
● Strongly-typed and streamlined 

communication
● Consistency between languages



Proprietary vs well-known protocol
Proprietary:
● Control what and how you send
● Users need to learn it
● Most likely no libraries
● You own it forever and ever

Well-known:
● Open-source libraries available
● Users know how to use it*
● You don’t need to own it
● You may need to squeeze your structures into 

existing definitions



Versions Management



Version Management
● Semver shows what was changed
● Adding new features at the same pace
● Maintaining compatibility with older 

versions
● Adopting new language features

● How do you test things?
● How do you keep version numbers consistent 

between technologies?
● How to add features in all languages at once?
● What dependencies to use in different 

languages?
● What if dependencies differ?
● What about language-specific options?
● How to deal with logging between 

technologies?



Rigorous Testing
Testing:
● Isolate environments as much as 

possible - with Docker, 
TestContainers, Nix

● Run tests across all languages for each 
change

● Test all supported versions
● Try reproducing bugs in all languages
● Have uniform set of tests in all 

technologies

Tooling:
● Use tools for managing versions in one 

repository
● Be explicit about your dependencies
● Use as few tools for your CI/CD and 

installation process as possible
● Do not use things that may cause conflicts



Diversity



Diversity
● Languages differ and nobody knows 

all of them
● Idiomatic code is nice to have but 

hard to write and maintain
● Using same code structure between 

languages makes it easier for 
maintenance but leads to worse 
results

● Have Language Champion
● Run regular sessions to share insights
● Have regular updates inside the team



Summary
● The less you maintain, the better
● Keep it consistent between platforms
● Think about backward and forward 

compatibility
● Test early, test often
● Rely on open standards
● Do not reinvent the wheel



Q&A



https://www.metisdata.io/

Thank you!

https://discord.gg/9TcgEgfKfR
https://discord.gg/9TcgEgfKfR
https://github.com/metis-data
https://github.com/metis-data
https://www.linkedin.com/company/metisdata/
https://www.linkedin.com/company/metisdata/
https://twitter.com/metisdata
https://twitter.com/metisdata
https://www.metisdata.io
https://www.metisdata.io

