
Adrian Machado, 2025

Your API Needs To 
Operate At The Edge
Unlock hidden performance gains



Overview

1. What is “the Edge”?
2. Edge considerations & trade-offs
3. Why deploy APIs to the Edge
4. A quick demo of an Edge API



Who am I?
🤠 Howdy - I’m Adrian

- Staff SWE at Zuplo

- Avid writer on all things API related

- Creator of RateMyOpenAPI

- Shoehorn evangelist



Who are you?

You will enjoy this presentation if you are:

1. An API eng/dev looking to modernize your API stack
2. An exec (ex. CTO) that oversees API development and 

wants to improve your API DevX
3. Looking to build an API, but don’t know the best practices 

and tools to get started with



01 What is “the 
Edge”?



The Status Quo

● Traditionally, applications and APIs are 
deployed to a single region or datacenter

● This can lead to high latency for users on the 
other side of the world

● CDNs were created to host static content 
closer to users

● Dynamic content or compute still slow



Introducing the Edge

● Your server code (mostly FaaS) is distributed 
around the world, like a CDN

● Lightweight runtime typically has 0ms 
coldstarts, ideal for instant responses

● Limited in bundle size, languages, and 
libraries

● Ex. Cloudflare Workers, Vercel edge



02 Edge 
Trade-Offs
It’s no silver bullet



The Edge Runtime

● Currently limited to Javascript (with some
WASM support)

● Limited support for NodeJS libraries
● Limits on maximum bundle size
● Many libraries have support for Edge runtimes (ex. Almost 

any lib that runs in the browser)



Where’s your Data?

● Your compute may be globally distributed, but 
your database is often not

● Round-trip from Edge <> DB Location <> 
Edge can often lead to worse response times 

● You can also end up exhausting connections 
to your Database

● There are some solutions to this…



Where’s your Data?



Database Proxy

● To avoid exhausting connections to your 
database, you can use a proxy (ex. Prisma 
Accelerate) to manage a pool that is shared 
across functions



Database Proxy cont’d

● This is a good solution for transitioning 
existing databases

● Can also introduce caching at this layer so 
fewer trips to the database are needed



Global Datastore

● Create distributed replicas of your database 
(ex. Cockroach DB) that are closer to your 
edge functions

● Trade-off with consistency (ex. Stale data 
with async writes) or latency (ex. Slow reads 
with sync writes)



Global Datastore



Data At The Edge

● In some cases, you can have data hosted or 
cached at the edge
a. CF R2 edge blob store
b. CF D1/Upstash for edge SQLite (good for 

per-user databases and compliance)
c. KV / Redis / Vercel Edge cache for 

key-value



Data At The Edge



03 Why Deploy 
APIs to the 
Edge?



Performance Matters

● Your public API users can be anywhere in the 
world, and slow APIs make for a poor 
experience - which can mean lost customers

● A lot of work done by APIs is actually filtering 
out calls - which is primarily compute-based, 
and can be performed at the edge





Work Done At The Edge

● Authentication / Authorization
● Logging/monitoring
● Request validation
● WAF (ex. Bot/bad actor filtering)
● Rate Limiting
● Caching



Ideal Setup

● Run your API gateway at the edge (ex. Zuplo) 
while your services are hosted close to your 
data-store (and also in multiple regions)
a. This gives you freedom over tech stack 

and library usage
b. Common compute is offloaded to the edge 

for quick responses
c. Gateway dynamically routes to closest 

region



04 Edge API 
Demo



Building an ATM Locator

● ATM locations can be replicated or stored at 
the Edge - they are location specific and 
rarely written to

● Performance is important for navigation
● Can benefit from caching since rarely 

updated



Dataset

● Using Capital One’s Nessie hackathon API
● Their API performance is already really good 

- Capital One already uses serverless and 
edge functions for their APIs and 
microservices

● They can return 10 results in ~100 ms - lets 
try and get close to that



System Design

Edge 
FunctionEdge Cache D1 DatabaseVercel



System Design

● We use Vercel to host a simple NextJS site 
that renders ATM locations

● Zuplo is an API gateway hosted at the Edge 
(on the CF network) 

● D1 is Cloudflare’s Serverless SQLite DB - 
ideally we are routed to a nearby instance



Debugging Slowness

● The initial call we make is very slow 
(1000-2000ms) - this can be due to:
a. D1 being slow at queries -> can introduce 

an index
b. Our D1 instance being far (d1 will only 

assign a local DB at higher volumes) -> 
Cache results

c. API gateway latency -> Move off the edge



Debugging Slowness



Add Caching

● We can cache based on a prefix of longitude 
and latitude (ie. regional cache)

● Results are cached at the edge for lowest 
latency

● Subsequent calls: ~70ms Response time
● Not bad for an entirely free stack




