How to use ChatGPT without getting caught Aldan Creo

How to use ChatGPT without getting caught

What are LLMs? **Common techniques** Circumvention

What are LLMs?

Common techniques

Circumvention

What are LLMs?

in out We need to stop

We need to stop anthrop

We need to stop anthropomorph

We need to stop anthropomorphizing

We need to stop anthropomorphizing Chat

We need to stop anthropomorphizing ChatG

We need to stop anthropomorphizing ChatGPT

We need to stop anthropomorphizing ChatGPT.

•	•	•	•	•	•	•	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	

Common techniques

Circumvention

Ethics

Common techniques Classifiers

What's a classifier?

What's a classifier?

Yes / No

Training examples

What's a classifier?

Test examples

Training examples

What's a classifier?

Test examples

OpenAI classifier

<u>Web demo</u> →

Ghostbuster

Figure 1: An outline of our model training procedure. First, we fed each document into a series of weaker language models to obtain token probabilities. Then, we ran a structured search over combinations of the model outputs and trained a linear classifier on the selected features.

<u>Ghostbuster: Detecting Text Ghostwritten by Large Language Models</u>

Ghostbuster

<u>Web demo →</u>

Common techniques Black-box analysis

viques sis

Common techniques White-box analysis

GLTR Real text

Following Cas9 cleavage, DNA repair without a donor template is generally considered stochastic, heterogeneous and impractical beyond gene disruption. Here, we show that template-free Cas9 editing is predictable and capable of precise repair to a predicted genotype, enabling correction of disease-associated mutations in humans. We constructed a library of 2,000 Cas9 guide RNAs paired with DNA target sites and trained inDelphi, a machine learning model that predicts gen otypes and frequencies of 1- to 60-base-pair deletions and 1-base-pair insertions with high accuracy (râĢī=âĢī0.87) in five human and mouse cell lines. inDelphi predicts that 5âĢĵ11% of Cas9 guide RNAs targeting the human genome are âĢĺprecise-50âĢĻ, yielding a single genotype comprising greater than or equal to 50% of all major editing products. We experimentally confirmed precise-50 insertions and deletions in 195 human disease-relevant alleles, including correction in primary patient-derived fibroblasts of pathogenic alleles to wild-type genotype for HermanskyâĢĵPudlak syndrome and Menkes disease. This study establishes an approach for precise, template-free genome editing.

GLTR: Statistical Detection and Visualization of Generated Text

+ GPT-2

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexpl ored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

PA©rez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them âĢĵ they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, "We can see, for example, that they have a common ' language,' something like a dialect or dialectic."

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost race of people who lived there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each other in a time before human civilization. According to Pérez, " In South America, such incidents seem to be quite common."

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a lost alien race is through DNA. "But they seem to be able to communicate in English quite well, which I believe is a sign of evolution, or at least a change in social organization," said the scientist.

GLTR

<u>Web demo</u> →

DetectGPT

DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature

Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

User prompt

Can you write a few sentences about a capybara that is an astrophysicist?

Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

User prompt

•

Can you write a few sentences about a capybara that is an astrophysicist?

ChatGPT

6

Dr. Capy Cosmos, a capybara unlike any other, astounded the scientific community with his groundbreaking research in astrophysics. With his keen sense of observation and unparalleled ability to interpret cosmic data, he uncovered new insights into the mysteries of black holes and the origins of the universe.

Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

User prompt

Can you write a few sentences about a capybara that is an astrophysicist?

ChatGPT

6

Dr. Capy Cosmos, a capybara unlike any other, * astounded the scientific community with his groundbreaking research in astrophysics. With his keen sense of observation and unparalleled ability to interpret cosmic data, he uncovered new insights into the mysteries of black holes and the origins of the universe.

Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

User prompt

Can you write a few sentences about a capybara that is an astrophysicist?

Conditioned probability

Surprising!

ChatGPT

•

Dr. Capy Cosmos, a capybara unlike any other, astounded the scientific community with his groundbreaking research in astrophysics. With his keen sense of observation and unparalleled ability to interpret cosmic data, he uncovered new insights into the mysteries of black holes and the origins of the universe.

Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

Binoculars

SPOTTING LLMS WITH BINOCULARS: ZERO-SHOT DETECTION OF MACHINE-GENERATED TEXT

Abhimanyu Hans* University of Maryland Avi Schwarzschild* Carnegie Mellon University

Hamid Kazemi University of Maryland Aniruddha Saha University of Maryland

Jonas Geiping ELLIS Institute & MPI for Intelligent Systems, Tübingen AI Center Valeriia Cherepanova University of Maryland

Micah Goldblum New York University

Tom Goldstein University of Maryland

Binoculars

perplexity(text)

cross-perplexity(text)

Binoculars

Binoculars

perplexity

Exploiting probability distributions

Binoculars

Exploiting probability distributions

Binoculars

human perplexity(text)
cross-perplexity(text) Magic ratio: 0.85 AI

Binoculars

Common techniques Watermarking

TOP SECRET

Red list

Red / green list

Green list

- Tree
- House
- Park
- Fountain
- Obama •
- Note

- Car
- Street
- River
- Pizza
- Barack
- London

- Tree
- House
- Park
- Fountain
- Obama •
- Note

- Car
- Street
- River
- Pizza
- Barack
- London

Weak watermarking

- Tree
- House
- Park
- Fountain
- Obama •
- Note

- Car
- Street
- River
- Pizza
- Barack
- London

Weak watermarking

Red / green list... whenever you can

- Tree
- House
- Park
- Fountain
- Obama
- Note

- Car
- Street
- River
- Pizza
- Barack
- London

The "capybara problem"

Common techniques Manual techniques

How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection

Part-of-Speech Comparison (En)

Writing style

Dialects

Typos

The sun was shining and birds were when the pone rang.

singing. My sister was playing the piano

Hallucinations

The sun was shining that night and birds were singing. My sister was playing the piano when the phone rang.

ERROR TYPE	DEFINITION	EXAMPLE	
Language Errors			
Grammar and Usage	Missing, extra, incorrect, or out of order words	explaining how cats feel emoticons	
Off-Prompt	Generation is unrelated to or contradicts prompt	PROMPT: Dogs are the new kids. GENERA- TION: Visiting the dentist can be scary	
Redundant	Lexical, semantic, or execessive topical repe- tition	Merchants worry about poor service or service that is bad	
Self-Contradiction	Generation contradicts itself	Amtrak plans to lay off many employees, though it has no plans cut employee hours.	
Incoherent	Confusing, but not any error type above	Mary gave her kids cheese toast but drew a map of it on her toast.	
Factual Errors			
Bad Math	Math or conversion mistakes	it costs over £1,000 (\$18,868)	
Encyclopedic	Facts that annotator knows are wrong	Japanese Prime Minister Justin Trudeau said Monday	
Commonsense	Violates basic understanding of the world	The dress was made at the spa.	
Reader Issues			
Needs Google	Search needed to verify claim	Jose Celana, an artist based in Pensacola, FL,	
Technical Jargon	Text requires expertise to understand	an 800-megawatt photovoltaic plant was built	

Is GPT-3 Text Indistinguishable from Human Text? Scarecrow: A Framework for Scrutinizing Machine Text

machine-generated texts.

Deepfake Text Detection in the Wild

Human annotators are only slightly better than random guessing at identifying

Circumvention

Ideas?

Circumvention Paraphrasing

Paraphrasing evades detectors of AI-generated text, but retrieval is an effective defense

Text	# tokens	# green tokens	Accuracy	Perplexity
Original	19042	11078	97%	6.7
Paraphrase with PEGASUS	16773	7412		10.2
Paraphrase with T5	15164	6493		16.7
Paraphrase with fine-tuned T5	14913	6107		18.7

Can AI-Generated Text be Reliably Detected?

. •

• • •

Text	# tokens	# green tokens	Accuracy	Perplexity
Original	19042	11078	97%	6.7
Paraphrase with PEGASUS	16773	7412	80%	10.2
Paraphrase with T5	15164	6493	64%	16.7
Paraphrase with fine-tuned T5	14913	6107	57%	18.7

Can AI-Generated Text be Reliably Detected?

• • • • • • • • • • • • • • • • • • • • • •

AutoWriter

T5

DeepL Write

<u>Web demo →</u>

Circumvention Manual tricks

« write as if you were... »

Using active voice

Very specific data

Avoid quotes

Outline the structure

Write the beginning of the answer

Use other LLMs

Don't use English

Transform type	Example	Sample references
Any token replacement	$dog \rightarrow !og$	[13, 20–22]
Adjacent keyboard typos	achieve ightarrow axhieve	[23, 24]
Common misspellings	achieve ightarrow acheive	[23]
Number to word form	$12 \rightarrow twelve$	[25]
Leetspeak conversions	$leet \rightarrow l33t$	[26]
Vowel removal, letter shuffling, etc	$letters \rightarrow ltetrs$	[27]
Phonetic replacements	$fair \rightarrow fare$	[28, 29]
Homograph adjective manipulation	short lead \rightarrow hot lead	[30]
Unicode-based replacements	$a \rightarrow \dot{a}$	[31]
Visual character mapping	cl ightarrow d	[32, 33]
Invisible characters	$abc \rightarrow abc < U+200B >$	[8]
Inflectional perturbations	$run \rightarrow running$	[34]
Thesaurus-based synonyms	$happy \rightarrow joyful$	[35–37]
Word to emoji	$love \rightarrow \heartsuit$	[38]
Word embedding-based	$fast \rightarrow swift$	[24, 39, 40]
Counter-fitted synonyms	$happy \rightarrow content$	[6, 41]
Context-aware embeddings	$bank \rightarrow credit$ union	[42]
Masked language model infill	go [MASK](here) fast \rightarrow go very fast	[6, 19, 42–45]
Phrase replacements	quickly run \rightarrow swiftly sprint	[38, 45, 46]
Predefined parse template filling	[Noun] runs [Adverb] \rightarrow The dog runs quickly	[46]
Derived rule-based	What NOUN \rightarrow Which NOUN	[47]

Token-Modification Adversarial Attacks for Natural Language Processing: A Survey

Table 2

Examples of different transformation types, and some examples of methods where they were used.

Transform type	Example	Sample references
Any token replacement	$dog \rightarrow !og$	[13, 20–22]
Adjacent keyboard typos	$achieve \rightarrow axhieve$	[23, 24]
Common misspellings	$achieve \rightarrow acheive$	[23]
Number to word form	$12 \rightarrow twelve$	[25]
Leetspeak conversions	$leet \rightarrow l33t$	[26]
Vowel removal, letter shuffling, etc	$letters \rightarrow ltetrs$	[27]
Phonetic replacements	$fair \rightarrow fare$	[28, 29]
Homograph adjective manipulation	short lead \rightarrow hot lead	[30]
Unicode-based replacements	$a \rightarrow \dot{a}$	[31]
Visual character mapping	$cl \rightarrow d$	[32, 33]
Invisible characters	$abc \rightarrow abc < U + 200B >$	[8]
Inflectional perturbations	$run \rightarrow running$	[34]
Thesaurus-based synonyms	$happy \rightarrow joyful$	[35–37]
Word to emoji	$love \rightarrow \heartsuit$	[38]
Word embedding-based	$fast \rightarrow swift$	[24, 39, 40]
Counter-fitted synonyms	$happy \rightarrow content$	[6, 41]
Context-aware embeddings	$bank \rightarrow credit$ union	[42]
Masked language model infill	$go [MASK](here) fast \rightarrow go very fast$	[6, 19, 42–45]
Phrase replacements	quickly run \rightarrow swiftly sprint	[38, 45, 46]
Predefined parse template filling	[Noun] runs [Adverb] \rightarrow The dog runs quickly	[46]
Derived rule-based	What NOUN \rightarrow Which NOUN	[47]

Token-Modification Adversarial Attacks for Natural Language Processing: A Survey

Table 2

Examples of different transformation types, and some examples of methods where they were used.

50 first words

Undetectable

<u>Web demo</u> →

Circumvention Gonna get harder over time

as these models improve over time, the generated text looks increasingly similar to human text. [...]

even the most effective detector [is ineffective] when dealing with a sufficiently advanced language model.

Can AI-Generated Text be Reliably Detected?

You can detect your texts

Really hard, gonna be an issue in the future

https://forms.gle/39ULnvq3rSBpmN538

Further reading...

- Paraphrasing evades detectors of AI-generated text, but retrieval is an effective defense
- Can AI-Generated Text be Reliably Detected?
- A Watermark for Large Language Models \bullet
- DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability \bullet Curvature
- New AI classifier for indicating AI-written text Ghostbuster: Detecting Text Ghostwritten by Large Language Models Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated
- \bullet \bullet
- Гext