
Cocktail of Environments
How to Mix Test and Development Environments and Stay Alive

@aatarasoff

@aatarasoff

@aatarasoff

2

@aatarasoff

3

@dmitryi.ulianov

@d-ulyanov

@dmitrii-ulianov

Prologue: When CTO Comes to You

4

5

Initial state

6

Typical Environments

Goals

● Always stable testing env

● Minimize Dev vs QA gap

● Unblock parallel testing

● Try to keep it simple

7

8

Atypical Environments

9

One Cluster - Several Environments

10

Stable Dev

Always contains all the services with
the same versions as in production

11

Stable Dev

Default routes come to it

Always contains all the services with
the same versions as in production

12

Stable Dev

Foundation for developing, testing, and staging

13

Stable Dev Explained

14

Branch Dev

Developers test
 in branch

15

Release Candidates Dev

Every new release
is deployed as a
candidate first

Issues to
address

● Routing aka Service Mesh

● Event Routing

● Data Isolation

16

Chapter 1: Service Mesh

17

Issues to
address

● Test a release candidate in a call chain

● Test a branch version

18

19

Service Injection

20

Service Injection

As a developer I created new
branch: feature/mp-101-bla-bla

21

Service Injection

Deploy each branch to
dev cluster

22

Service Injection

x-service-route: payment-service:mp-101

23

Service Injection

x-service-route: payment-service:mp-101

Nginx unpacks cookie to header

24

We Need More Branches

x-service-route: payment-service:mp-101::cart-service:mp-102

25

Release Candidates Testing

Every new release
is deployed as a
candidate first

x-service-route: payment-service:rc

Istio Virtual Service

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: payment-service
spec:
 ...
 http:
 - name: stable
 route:
 - destination:
 host: payment-service.services.svc.cluster.local

26

Istio Virtual Service

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: payment-service
spec:
 ...
 http:
 - name: stable
 route:
 - destination:
 host: payment-service.services.svc.cluster.local

27

Deploy for every stable version
via Helm chart

Route to a Branch

apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
 name: payment-service
spec:
 ...
 http:
 - name: payment-service-mp-101
 match:
 - headers:
 x-service-route:
 regex: ^(payment-service:mp-101.*|.*::payment-service:mp-101.*)$
 - name: stable
 route:
 - destination:
 host: payment-service.services.svc.cluster.local 28

We cannot add it with
Helm chart

Virtual Service Merge Operator

apiVersion: istiomerger.monime.sl/v1alpha1
kind: VirtualServiceMerge
metadata:
 name: payment-service-mp-101
spec:
 patch:
 http:
 - name: payment-service-mp-101
 match:
 - headers:
 x-service-route:
 regex: ^(payment-service:mp-101.*|.*::payment-service:mp-101.*)$
 target:
 name: payment-service

29

Deploy for every branch
via Helm chart

30

Tricky Case: Webhooks

31

Tricky Case: Webhooks

Nobody knows about
your internal
infrastructure

32

Solution #1: Webhooks
We can switch URL
for webhook on the

third-party side

33

Solution #1: Webhooks
We can switch URL
for webhook on the

third-party side

However, we affect
stable version

34

Solution #2: Webhooks
Create advanced mock or Fake

to get rid of
External Service dependency at all

35

Solution #3: Webhooks
Use Smart-Proxy

and some correlation ID
for matching requests

from the external service

36

Solution #3: Webhooks

We chose this approach

Use Smart-Proxy
and some correlation ID
for matching requests

from the external service

Recall
the issues
to address

● Routing aka Service Mesh ✅
● Event Routing

● Data Isolation

37

Chapter 2: Event Routing

38

39

What About Event-Driven?

Async processes?

Unblocking Async Scenarios

40

41

Async Issues

42

Async Issues

Who should
process a message?

43

Let’s Use Event Routing

44

Subscription for All Branches

Developers can
interfere with one

another

45

Subscription per Branch

To implement it
we need

● Static subscription for RC

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

46

To implement it
we need

● Static subscription for RC

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

47

48

Static Subscriptions
Re-run the state

machine

Change the
Pub/Sub module

49

Static Subscriptions
Re-run the state

machine

Change the
Pub/Sub module

some-subscription-rc
some-subscription-qa

Issues to
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

50

51

Dynamic Subscriptions

52

Dynamic Subscriptions

Register on branch
first pipeline

53

Dynamic Subscriptions

Register on branch
first pipeline

Re-apply Pub/Sub
module

54

Dynamic Subscriptions

Register on branch
first pipeline

Re-apply Pub/Sub
module

some-subscription-mp-101

55

Dynamic Subscriptions

Deregister on
branch deletion

56

Dynamic Subscriptions

Deregister on
branch deletion

Re-apply Pub/Sub
module

57

Dynamic Subscriptions

Deregister on
branch deletion

Re-apply Pub/Sub
module

order-subscription-mp-101

58

Deployment Process

Issues to
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

59

60

Common Library

61

Common Library

Skip or Process?

62

Common Library: Decision Maker

It is NOT FOR me

63

Common Library: Decision Maker

It is NOT FOR me It is NOT FOR me

64

Common Library: Decision Maker

It is NOT FOR me It is NOT FOR meIt is FOR me

65

Common Library: Decision Maker

It is NOT FOR me It is NOT FOR meIt is FOR me?

66

Common Library: Decision Maker

Should be aware of all
other versions

67

Common Library

Put it back to the
client context

68

Async Scenarios are Unlocked

Recall
the issues
to address

● Routing aka Service Mesh ✅
● Event Routing ✅
● Data Isolation

69

Chapter 3: Data Isolation

70

Make the Solution Safe

71

72

Migrations that Break

You want to test
migrations in your branch

73

Migrations that Break

However, you may
affect stable

version

You want to test
migrations in your branch

74

Use Separated DB for All Branches

75

Use Separated DB per Branch

We chose this variant

76

Separated DBs Schema

77

Separated DBs Schema

The same
issues to
address

● Separated Redis for branches

● Separated DB for branches

○ the incomplete data

78

Recall
the issues
to address

● Routing aka Service Mesh ✅
● Event Routing ✅
● Data Isolation ✅

79

Chapter 4: Ephemeral Environments

80

81

Welcome to Real Life

82

Welcome to Ephemeral Environments

Types of
Ephemeral

Environments

● One service branch

● Several services branches

○ under one x-source-route

○ Jira-based

● Custom environments

○ for squad (payment-dev)

○ for domain (warehouse)

83

Types of
Ephemeral

Environments

● One service branch

● Several services branches

○ under one x-source-route

○ Jira-based

● Custom environments

○ for squad (payment-dev)

○ for domain (warehouse)

84

85

Custom Ephemeral Environments

Epilogue: Let’s Reflect a Little

86

Benefits

● No silo between Dev and QA

● Low resources consumption

● Environments on-demand

87

Drawbacks

● High cognitive load

● Time investments

● Not-fair isolation

88

Questions?

@aatarasoff

89

@d-ulyanov

@dmitrii-ulianov

