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Prologue: When CTO Comes to You
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Initial state
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Typical Environments



Goals

● Always stable testing env

● Minimize Dev vs QA gap

● Unblock parallel testing

● Try to keep it simple
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Atypical Environments



9

One Cluster - Several Environments
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Stable Dev

Always contains all the services with 
the same versions as in production
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Stable Dev

Default routes come to it

Always contains all the services with 
the same versions as in production
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Stable Dev

Foundation for developing, testing, and staging
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Stable Dev Explained
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Branch Dev

Developers test
 in branch
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Release Candidates Dev

Every new release 
is deployed as a 
candidate first



Issues to 
address

● Routing aka Service Mesh

● Event Routing

● Data Isolation
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Chapter 1: Service Mesh
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Issues to 
address

● Test a release candidate in a call chain

● Test a branch version
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Service Injection
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Service Injection

As a developer I created new 
branch: feature/mp-101-bla-bla
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Service Injection

Deploy each branch to 
dev cluster
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Service Injection

x-service-route: payment-service:mp-101
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Service Injection

x-service-route: payment-service:mp-101

Nginx unpacks cookie to header



24

We Need More Branches

x-service-route: payment-service:mp-101::cart-service:mp-102
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Release Candidates Testing

Every new release 
is deployed as a 
candidate first

x-service-route: payment-service:rc



Istio Virtual Service
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
  name: payment-service
spec:
  ...
  http:
  - name: stable
    route:
    - destination:
        host: payment-service.services.svc.cluster.local
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Istio Virtual Service
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
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Deploy for every stable version 
via Helm chart



Route to a Branch
---
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
  name: payment-service
spec:
  ...
  http:
  - name: payment-service-mp-101
    match:
    - headers:
        x-service-route:
          regex: ^(payment-service:mp-101.*|.*::payment-service:mp-101.*)$
  - name: stable
    route:
    - destination:
        host: payment-service.services.svc.cluster.local 28

We cannot add it with 
Helm chart



Virtual Service Merge Operator
---
apiVersion: istiomerger.monime.sl/v1alpha1
kind: VirtualServiceMerge
metadata:
  name: payment-service-mp-101
spec:
  patch:
    http:
    - name: payment-service-mp-101
      match:
      - headers:
          x-service-route:
            regex: ^(payment-service:mp-101.*|.*::payment-service:mp-101.*)$
  target:
    name: payment-service
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Deploy for every branch
via Helm chart
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Tricky Case: Webhooks
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Tricky Case: Webhooks

Nobody knows about 
your internal 
infrastructure
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Solution #1: Webhooks
We can switch URL 
for webhook on the 

third-party side
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Solution #1: Webhooks
We can switch URL 
for webhook on the 

third-party side

However, we affect 
stable version
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Solution #2: Webhooks
Create advanced mock or Fake 

to get rid of 
External Service dependency at all
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Solution #3: Webhooks
Use Smart-Proxy 

and some correlation ID 
for matching requests 

from the external service
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Solution #3: Webhooks

We chose this approach

Use Smart-Proxy 
and some correlation ID 
for matching requests 

from the external service



Recall 
the issues 
to address

● Routing aka Service Mesh ✅
● Event Routing

● Data Isolation
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Chapter 2: Event Routing
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What About Event-Driven?

Async processes?



Unblocking Async Scenarios
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Async Issues
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Async Issues

Who should 
process a message?
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Let’s Use Event Routing
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Subscription for All Branches

Developers can 
interfere with one 

another
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Subscription per Branch



To implement it 
we need

● Static subscription for RC

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

46



To implement it 
we need

● Static subscription for RC

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic

47



48

Static Subscriptions
Re-run the state 

machine

Change the 
Pub/Sub module
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Static Subscriptions
Re-run the state 

machine

Change the 
Pub/Sub module

some-subscription-rc
some-subscription-qa



Issues to 
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic
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Dynamic Subscriptions
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Dynamic Subscriptions

Register on branch 
first pipeline
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Dynamic Subscriptions

Register on branch 
first pipeline

Re-apply Pub/Sub 
module
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Dynamic Subscriptions

Register on branch 
first pipeline

Re-apply Pub/Sub 
module

some-subscription-mp-101
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Dynamic Subscriptions

Deregister on 
branch deletion
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Dynamic Subscriptions

Deregister on 
branch deletion

Re-apply Pub/Sub 
module
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Dynamic Subscriptions

Deregister on 
branch deletion

Re-apply Pub/Sub 
module

order-subscription-mp-101
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Deployment Process



Issues to 
address

● Static subscription for canary

● Dynamic subscriptions for branches

● Common library

○ context propagation

○ message skip logic
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Common Library
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Common Library

Skip or Process?



62

Common Library: Decision Maker

It is NOT FOR me
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Common Library: Decision Maker

It is NOT FOR me It is NOT FOR meIt is FOR me
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Common Library: Decision Maker

It is NOT FOR me It is NOT FOR meIt is FOR me?



66

Common Library: Decision Maker

Should be aware of all 
other versions
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Common Library

Put it back to the 
client context
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Async Scenarios are Unlocked



Recall 
the issues 
to address

● Routing aka Service Mesh ✅
● Event Routing ✅
● Data Isolation
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Chapter 3: Data Isolation
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Make the Solution Safe
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Migrations that Break

You want to test 
migrations in your branch
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Migrations that Break

However, you may 
affect stable 

version

You want to test 
migrations in your branch
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Use Separated DB for All Branches
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Use Separated DB per Branch

We chose this variant
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Separated DBs Schema
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Separated DBs Schema



The same 
issues to 
address

● Separated Redis for branches

● Separated DB for branches

○ the incomplete data
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Recall 
the issues 
to address

● Routing aka Service Mesh ✅
● Event Routing ✅
● Data Isolation ✅

79



Chapter 4: Ephemeral Environments
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81

Welcome to Real Life
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Welcome to Ephemeral Environments



Types of 
Ephemeral 

Environments

● One service branch

● Several services branches

○ under one x-source-route

○ Jira-based

● Custom environments

○ for squad (payment-dev)

○ for domain (warehouse)
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Custom Ephemeral Environments



Epilogue: Let’s Reflect a Little
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Benefits

● No silo between Dev and QA

● Low resources consumption

● Environments on-demand
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Drawbacks

● High cognitive load

● Time investments

● Not-fair isolation
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