

How we almost secured our projects
by writing more tests

Alessio Greggi – Conf42 2024

$ whoami

● Alessio Greggi
● Software Engineer
● Cat food opener for my furry friend
● Passionate about reading and taking long walks
● $ cat {github,linkedin,twitter}.com |
uniq
alegrey91

What is Code Coverage

● A metric that can help you understand how
much of your source is tested

● Mostly used when writing unit-tests

Code Coverage with Go

● First time introduced in version 1.2 for unit-
tests
https://tip.golang.org/doc/go1.2#cover

● The story continues with version 1.20 with
support for integration-tests
https://go.dev/blog/integration-test-coverage

● Sensitively increased coverage percentage of
projects

go test -coverprofile=coverage.out -cover -v ./...

go tool cover -html=coverage.out -o coverage.html

https://tip.golang.org/doc/go1.2#cover
https://go.dev/blog/integration-test-coverage

What is a Seccomp Profile

● It’s a security feature of the Linux kernel
● Rules are defined in a file and referred to as a

seccomp profile
● Extensively used in the Kubernetes

ecosystem (default profile)

Seccomp profile as artifact

Seccomp profile as artifact

Extracting the syscalls

Credits: Go-callvis
https://github.com/ondrajz/go-callvis/tree/master/examples

Extracting the syscalls (integration-
tests)

● Build the binary
● Provide scripts that check for expected results
● Run the binary along with some tracing tool

(strace/perf/...)
● Collecting executed syscalls
● This allow us to collect most of the syscalls

used in the program

Extracting the syscalls (unit-tests)

● A bit more complicated..
● go test command compile and run the test

binary all at once
(no strace go test .)

● The test binary could include “noise” not related
to our syscalls
(no strace ./test-binary)

Harpoon

● Idea: use eBPF to define a tracepoint that starts
when a uprobe attached to the function is
triggered and stops when the uretprobe
returns

● Previously iovisor/gobpf (bcc project)

● Currently using aquasecurity/libbpfgo

Harpoon

● Build the test binary first:
go test -c ./pkg/example

● Search for the function symbol name within the
test binary:
objdump --syms ./binary.test | grep
myFunction

Harpoon

harpoon -fn main.doSomething ./binary.test

Harpoon

The Uretprobe issue
● A uretprobe overwrite the return address of the probed function with the

address of a trampoline
● Once hit, the eBPF code is executed and after its end, the instruction pointer

is restored to point to the next instruction

● Since the stack dinamically changes (due to the GC), it could cause the
program corruption

Workaround

● uprobes can be attached to specific offsets
● Simulate a uretprobe by adding a uprobe on

each RET instruction

Suggested here:
https://github.com/iovisor/bcc/issues/1320

Benefits of moving to libbpfgo

● More efficient:
We can simulate a uretprobe by attaching
uprobes at RET instructions

● Easily distributable:
eBPF program is now CO-RE (no more GCC
dependency)

References / Special Thanks
● https://github.com/iovisor/bcc/issues/1320#issuecomment-407927542

● https://github.com/golang/go/issues/22008#issuecomment-523237105

● https://github.com/golang/go/issues/22008#issuecomment-864559684

● https://github.com/golang/go/issues/27077#issuecomment-415141461

● https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-li
nux-6b9802682223

● Gianluca Borello (gianlucaborello)

● Mattia Meleleo (matt11)

● Luca Di Maio (89luca89)

https://github.com/iovisor/bcc/issues/1320#issuecomment-407927542
https://github.com/golang/go/issues/22008#issuecomment-523237105
https://github.com/golang/go/issues/22008#issuecomment-864559684
https://github.com/golang/go/issues/27077#issuecomment-415141461
https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-linux-6b9802682223
https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-linux-6b9802682223

Thanks for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

