How we almost secured our projects
by writing more tests

Alessio Greggi—Conf42 2024

S whoami

* Alessio Greggqi

Software Engineer
Cat food opener for my furry friend

Passionate about reading and taking long walks

S cat {github, linkedin,twitter}.com \
uniqg

alegrey9l

What is Code Coverage

* A metric that can help you understand how
much of your source is tested

* Mostly used when writing unit-tests

O 093.6% -

Coverage on 82K Lines to cover Unit Tests

Code Coverage with Go

* First time introduced in version 1.2 for unit-
tests

https://tip.golang.org/doc/go1.2#cover

* The story continues with version 1.20 with
support for integration-tests
https://go.dev/blog/integration-test-coverage

* Sensitively increased coverage percentage of
projects

go test -coverprofile=coverage.out -cover -v ./...

go tool cover —-html=coverage.out —-o coverage.html

https://tip.golang.org/doc/go1.2#cover
https://go.dev/blog/integration-test-coverage

What is a Seccomp Profile

* |t's a security feature of the Linux kernel

* Rules are defined in a file and referred to as a
seccomp profile

* Extensively used in the Kubernetes

ecosystem (default profile)

Seccomp profile as artifact

Seccomp profile as artifact

Extracting the syscalls

Credits: Go-callvis
https://github.com/ondrajz/go-callvis/tree/master/examples

Extracting the syscalls (integration-
tests)
* Build the binary

* Provide scripts that check for expected results

* Run the binary along with some tracing tool
(strace/perf/...)

* Collecting executed syscalls

* This allow us to collect most of the syscalls
used in the program

Extracting the syscalls (unit-tests)

* A bit more complicated..

e go test command compile and run the test

binary all at once
(no strace go test .)

* The test binary could include “noise"” not related
to our syscalls
(no strace ./test-binary)

Harpoon

* |dea: use eBPF to define a tracepoint that starts
when a uprobe attached to the function is

triggered and stops when the uretprobe
returns

* Previously iovisor/gobpf (bcc project)

e Currently using aquasecurity/libbpfgo

Harpoon

* Build the test binary first:
go test -c ./pkg/example

* Search for the function symbol name within the

test binary:
objdump --syms ./binary.test | grep

myFunction

Harpoon

harpoon —-fn main.doSomething ./binary.test

Harpoon

The Uretprobe issue

A uretprobe overwrite the return address of the probed function with the
address of a trampoline

Once hit, the eBPF code is executed and after its end, the instruction pointer
is restored to point to the next instruction

Since the stack dinamically changes (due to the GC), it could cause the
program corruption

Workaround

* uprobes can be attached to specific offsets

* Simulate a uretprobe by adding a uprobe on
each RET instruction

Suggested here:
https://github.com/iovisor/bcc/issues/1320

Benefits of moving to 1ibbpfgo

* More efficient:

We can simulate a uretprobe by attaching
uprobes at RET instructions

* Easily distributable:

eBPF program is now CO-RE (no more GCC
dependency)

References [/ Special Thanks

https://github.com/iovisor/bcc/issues/13204issuecomment-407927542
https://github.com/golang/go/issues/22008#issuecomment-523237105
https://github.com/golang/go/issues/22008#issuecomment-864559684
https://github.com/golang/go/issues/27077#issuecomment-415141461

https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-li
nux-6b9802682223

Gianluca Borello (gianlucaborello)
Mattia Meleleo (matt11)

Luca Di Maio (89luca89)

https://github.com/iovisor/bcc/issues/1320#issuecomment-407927542
https://github.com/golang/go/issues/22008#issuecomment-523237105
https://github.com/golang/go/issues/22008#issuecomment-864559684
https://github.com/golang/go/issues/27077#issuecomment-415141461
https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-linux-6b9802682223
https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-linux-6b9802682223

Thanks for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

