
High-Load Systems: Overcoming
Challenges in Social Network
Development
By Alexander Kolobov

Alexander Kolobov

Developer and
Team Lead

● Teams > 10 members
● Desktop and Mobile
● New users and onboarding
● Workflows, roadmaps, KPIs

Today ● What is high-load
● High-load challenges and

requirements
● Technologies vs challenges

What is High-Load

High-Load or Not?

Resource
Utilisation

>50%

Availability
>99,99%

Latency
300ms

RPS
>10K

VK Social Network

Servers
20,000

Post views
per day

9B

Posts/day
100M

MAU
100M

VK Social Network

Resource
Utilisation

>60%

Availability
>99,94%

Latency
120ms

RPS
3M

High-Load Challenges

High-Load
Challenges

● Performance
● Data Management
● Scalability
● Reliability
● Fault Tolerance

External Solutions
Risks

● Designed for broad application
● Vulnerability
● Failures under high-loads
● Limited control
● Scalability limitations

High-Load
Structure
Requirements

● Downtime is unacceptable
● Zero data loss ensured by cloud

services
● Linear scaling
● Ease of maintenance

Technologies vs Challenges

VK Architecture Evolution

Year Users Technology

2013 55 million KPHP to C++ translator

2015 76 million Hadoop

2017 86 million CDN

2019-2020 97 million Blob Storage, gRPC, microservices on Go/Java, KPHP
language

2021-2022 100 million Parallelism in KPHP, QUIC, ImageProcessor, AntiDDOS

What happened? ● Popularity growing
● Databases slowing down
● Large and slow codebase
● Increased user-generated

content

● Data storage
● Microservice with an

embedded database
● C/C++

Specialized
Databases or
Engines

Benefits of Custom
Engines

● Minimal structuring
● Efficient data access
● Fast query execution
● Performance optimization
● Scalability

● Precomputed data
● Automatic code-level scaling
● Reduces load on backend

Heavy
Caching

KPHP

PHP C++

● 2-40 times faster in synthetic tests

KPHP — 10 times faster in
production environments

KPHP benefits ● Development convenience
● Support for PHP 7/8

Open Source Features:

● Fast compilation
● Strict typing
● Shared memory
● Parallelization
● Coroutines
● Inlining
● NUMA support

Noverify PHP Linter ● Designed for large codebases
● Focuses on analyzing git diff

pre-push
● Indexes approximately 1 million lines

of code per second
● Analyzes about 100,000 lines of

code per second
● Can also run on standard PHP

projects

Microservices
Go/ Java/ gRPC

● Time to market
● Develop services in different

languages

● Every image needs to be
displayed in multiple sizes

● Interface requirements
● Different platforms

Bottlenecks in
Content Storage
and Delivery

Results of switching from JPEG to
WebP

● 40% reduction in photo size
● 15% faster delivery time (50

to 100 ms improvement)

Image Processor
and WebP format

Other highload
companies — the
same principles

● Netflix: caching strategies and
custom data storage solutions

● Yandex: ClickHouse, in-house
caching solutions, distributed
systems

● LinkedIn: Espresso and caching with
Apache Kafka

● Twitter: Manhattan distributed
database

● High-load systems challenges: scalability limitations, reliability
issues, performance bottlenecks, and integration complexity.

● Requirements: zero data loss, rapid feature deployment, and
minimal downtime.

● Under high loads external solution become risky.
● Identify main bottlenecks and optimize them
● Technologies: efficient and scalable data storage with robust

caching, compiled languages, distributed architecture, and
advanced tooling.

Key Takeaways

DM me in Telegram

@iamaleko

