
Using the activity logs to 
predict user behaviour 
and improve experience



What

Table of contents

Why How Examples



WHAT



•
•
•

Introduction



How ML works ?
Train data set

Dogs – 10.000 images

Cats – 10.000 images

TRAINING

Test data set

TEST

Accuracy 

Usage



Most used
ML models



Decision Tree



…..

Result 1 Result N

Voting

Result

Neural Network
Input layer Hidden layer(s) Output layer



WHY ?



Why would I do this ?
• Personalize app experience
• Optimize common workflows
• Predict user actions to prepare for increased workloads on specific services



HOW ?



SETUP
• Given a user activity logs, we need to predict in real 

time which task a user will perform, so that we can 
predict server usage per task

• We will build a small neural network to predict the next 
action of a user

• Other alternatives can be ran on a statistical approach



Tensorflow



Tensorflow
• Use existing pre-trained models
• Retrain existing models
• Develop ML models

• Quickly train systems that use the classical ML models: 
regression, decision tree classifier neural network, etc.

• Easily adapt existing models to various use-cases

• Can run either on server or in the browser

• Already used by top companies



Basic regression example

import * as tf from '@tensorflow/tfjs';

const model = tf.sequential();

model.add(tf.layers.dense({units: 1, inputShape: [1]}));

model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

const xs = tf.tensor2d([-1, 0, 1, 2, 3, 4], [6, 1]);
const ys = tf.tensor2d([-3, -1, 1, 3, 5, 7], [6, 1]);

model.fit(xs, ys, {epochs: 250})

model.predict(tf.tensor2d([20], [1, 1])).print()

LinearRegression.js1. Import TensorflowJS

2. Define a sequential model

3. Add hidden layers to the 
model
4. Compile the model

5. Define or import training 
data for the model

6. Train the model using the 
train data

7. Use the model to predict the 
value of the function in the 
specified point



Next page 
prediction 
system



Given scenario
• Say that we have an application with multiple pages, 

and based on the user activity we want to either 
adapt the UI according to his/her needs or maybe 
even preload some components by predicting which 
page is the most likely to be the next one accessed

• As a real-life example, say that a user who usually 
logs into facebook and then immediately goes to the 
marketplace and then to the messages section, is 
expected to follow a similar pattern every time. What 
if based on the last few pages that you accessed, 
the app could know which page is the next one that 
you would like to access, and it could either re-order 
the sidenav for you, to make the most used pages 
more accessible or preload them to reduce waiting 
time.

Home

NewsFeed

Messages Reels

Marketplace Messages

NewsFeed Events

?



Implementation plan
1. Gather required data from activity logs
2. Transform data for training
3. Initiate the model
4. Train the model
5. Predict



Practical 
example



Environment 
●

●

●



Gathering the data
●

const data = []

function handlePageClick(page) {
data.push(page);
currentPage = page;

}

const data = []

function handlePageClick(page) {
data.push(page);
currentPage = page;
trainAndRunModel();

}

Also, since the training data is now different, we will re-train the model with the new data



Overview of the process

●

function trainAndRunModel() {
transformData();
initModel();
trainModel().then(() => {
predictPage();

});
}



Prepare data

function transformData() {
uniquePages = Array.from(new Set(data.map((entry) => entry.page)));

pageIndexMap = new Map(uniquePages.map((page, index) => [page, index]));

userPageMatrix = tf.zeros([1, uniquePages.length]);
data.forEach((entry) => {

const pageIndex = pageIndexMap.get(entry.page);
userPageMatrix.add(

tf
.oneHot(0, uniquePages.length)
.mul(tf.oneHot(pageIndex, uniquePages.length))

);
});

}



Define and compile the model
function initModel() {

model = tf.sequential({
layers: [
tf.layers.dense({
units: 8,
inputShape: [uniquePages.length],
activation: "relu",

}),
tf.layers.dense({
units: uniquePages.length,
activation: "softmax",

}),
],

});
model.compile({
optimizer: "adam",
loss: "categoricalCrossentropy",
metrics: ["accuracy"],

});
}

Note: the parameters presented here might not be 
the best ones for our use-case, and tweaking the 
model for obtaining the best results is part of the 
development.

Usually, trial and error is used until the accuracy of 
the model is satisfactory and the balance between 
accuracy and performance is achieved

The params that can be modified are:

• 1st Layer:
• Activation: RELU/GELU
• Units

• 2nd Layer:
• Activation

• Compilation:
• Optimizer
• Loss
• metrics



Train the model
●

●

async function trainModel() {
// Train the model
const labels = userPageMatrix;
const epochs = 100;
const batchSize = 2;
await model.fit(userPageMatrix, labels, {

epochs: epochs,
batchSize: batchSize,

});
}

Parameter tuning:
• epochs
• batchSize



Predict the next page

function createEmptyTensorOfSize(x) {
return tf.tensor2d([[1, ...new Array(x - 1).fill(0)]]);

}

function predictPage() {
const userHistory = createEmptyTensorOfSize(uniquePages.length);
const predictions = model.predict(userHistory);
predictions.print();
const nextPageIndex = predictions.argMax(1).dataSync()[0];
printPredictions(predictions);

}



Now what to do with the result ?
●

●

○

○



Full code

Navigate

Init model

Process data

Train model

Predict

Print

You can find the full source code on github at 

https://github.com/AlexHang/next-page-predictor

Or scan the QR code

https://github.com/AlexHang/next-page-predictor


Thanks!
Do you have any questions?

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

