Using the activity logs to
predict user behaviour
and improve experience @ —

Alex Hang]
Conf42 2025

Table of contents

01

What

How can activity logs
be used to predict user
activity ?

Why

Why am | attending this
presentation ? What
can ML do for my app ?

03 04

How Examples

How can | add improve
user experience with
ML and activity logs

Oh, so this is why we
came here

oduction

« Activity logs store past actions of our users

« Machine learning models are trained on historic data

« Models such as Neural Networks or LSTM can be used for
prediction tasks

How ML works ?

wwse) — [V

Test data set ‘ o

Accuracy

_

Most used
ML models

-

Linear regression Decision Tree

Random Forest Neural Network

Input layer Hidden layer(s)

Why would | do this ?

* Personalize app experience
* Optimize common workflows
* Predict user actions to prepare for increased workloads on specific services

10

SETUP

Given a user activity logs, we need to predict in real
time which task a user will perform, so that we can
predict server usage per task

We will build a small neural network to predict the next
action of a user

Other alternatives can be ran on a statistical approach

12

) Tensorflow

C

Tensorflow

Use existing pre-trained models
Retrain existing models
Develop ML models

Quickly train systems that use the classical ML models:

regression, decision tree classifier neural network, etc.
Easily adapt existing models to various use-cases
Can run either on server or in the browser

Already used by top companies

14

Basic regression example

1. Import TensorflowJS LinearRegression.js
2. Define a sequential model import * as tf from ‘@tensorflow/tfjs’;

3. Add hidden layers to the const model = tf.sequential();

model

_ model.add(tf.layers.dense({units: 1, inputShape: [1]}));
4. Compile the model

5. Define or import training model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

data for the model const xs
const ys

tf.tensor2d([-1, 0, 1, 2, 3, 4], [6, 1]);
tf.tensor2d([-3, -1, 1, 3, 5, 7], [6, 1]);

6. Train the model using the

train data
model.fit(xs, ys, {epochs: 250})

7. Use the model to predict the
value of the function in the model.predict(tf.tensor2d([20], [1, 1])).print()
specified point

15

Next page
prediction
system

Given scenario

Say that we have an application with multiple pages,
and based on the user activity we want to either
adapt the Ul according to his/her needs or maybe
even preload some components by predicting which
page is the most likely to be the next one accessed

As a real-life example, say that a user who usually
logs into facebook and then immediately goes to the
marketplace and then to the messages section, is
expected to follow a similar pattern every time. What
if based on the last few pages that you accessed,
the app could know which page is the next one that
you would like to access, and it could either re-order
the sidenav for you, to make the most used pages
more accessible or preload them to reduce waiting
time.

O B W=

Implementation plan
Gather required data from activity logs

. Transform data for training

Initiate the model

. Train the model

Predict

' o ¥

Practical
example

Environment

« light-weight NodedS application as wrapper around the ML app

« Tensorflow model running to predict the next user action

« Predicted user actions used to preload data or ensure server
resources are available

20

Gathering the data

e We will mock the activity logs in our test app by storing the datain memory
const data = []

function handlePageClick(page) {
data.push(page);
currentPage = page;

}

Also, since the training data is now different, we will re-train the model with the new data

const data = []

function handlePageClick(page) {
data.push(page);
currentPage = page;
trainAndRunModel();

21

Overview of the process

We will discuss each function in the next slides, for now, treat them as pseudocode

function trainAndRunModel() {
transformData();
initModel();
trainModel().then(() => {
predictPage();

});
}

22

Prepare data

function transformData() {

uniquePages = Array.from(new Set(data.map((entry) => entry.page)));
pageIndexMap = new Map(uniquePages.map((page, index) => [page, index]));

userPageMatrix = tf.zeros([1, uniquePages.length]);
data.forEach((entry) => {
const pageIndex = pageIndexMap.get(entry.page);
userPageMatrix.add(
tf
.oneHot (0, uniquePages.length)
.mul(tf.oneHot(pageIndex, uniquePages.length))
)
})s

23

Define and compile the model

function initModel() {
model = tf.sequential({
EVCICH

tf.layers.dense({
units: 8,
inputShape: [uniquePages.length],
activation: "relu”,

D,

tf.layers.dense({
units: uniquePages.length,
activation: "softmax"”,

1,
1,
});

model.compile({
optimizer: "adam",
loss: "categoricalCrossentropy",
metrics: ["accuracy"],

});
}

Note: the parameters presented here might not be
the best ones for our use-case, and tweaking the
model for obtaining the best results is part of the
development.

Usually, trial and error is used until the accuracy of
the model is satisfactory and the balance between
accuracy and performance is achieved

The params that can be modified are:

1st Layer:
Activation: RELU/GELU
Units
2nd | ayer:
Activation
Compilation:
Optimizer
Loss
metrics

24

Train the model

e The most important part is the training of the mode
e This takes us from an empty default neural network to a working application

async function trainModel() {

// Train the model Parameter tuning:

const labels = userPageMatrix; epochs
const epochs = 100; batchSize
const batchSize = 2;
await model.fit(userPageMatrix, labels, {

epochs: epochs,

batchSize: batchSize,
});

25

Predict the next page

function createEmptyTensorOfSize(x) {
return tf.tensor2d([[1, ...new Array(x - 1).fill(0)]]);

}

function predictPage() {
const userHistory = createEmptyTensorOfSize(uniquePages.length);
const predictions = model.predict(userHistory);
predictions.print();
const nextPageIndex = predictions.argMax(1l).dataSync()[0];
printPredictions(predictions);

26

Now what to do with the result ?

e Now that we have the result of the prediction, we can use it to predict the next action of the user
e Other use cases

o Preload assets to ensure loading times are shorter

o Detect anomalies in user flows

27

Full code

You can find the full source code on github at

https://github.com/AlexHang/next-page-predictor

Or scan the QR code

28

https://github.com/AlexHang/next-page-predictor

(Thanks!

Do you have any questions?

alexandruhang@yahoo.com
alexhang.com

Credits: This presentation template was created by
] Slidesgo, including icons by Flaticon, infographics &
images by Freepik

Please keep this slide for attribution

29

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

