
Your Website
Using React Three Fiber (R3F)

3D-fying

Alok Kumar
Hey, I'm Alok, your friendly neighborhood fullStack
developer From UtkalLabs. I'm all about JavaScript -
coding, blogging, Writing ebooks, and talking at events.
When I'm not in the tech world, you can catch me
watching anime, writing poems or jamming to music.

but I'm not just a tech geek. I love cooking up a storm in
the kitchen and going on adventures.

Fun fact About me: I once trekked through snow & mud in
just slippers to Grahan village situated at 7,700 ft.

I’m not lying...

Intro to Three.js &
R3F

Contents

01
Getting Started &

Setting Up

02
Creating 3D

Scenes

03

Environment and
Staging

04

Loading Models

05

Deployment

06

Introduction to
Three.js and React
Three Fiber (R3F)

webGL

A JavaScript API for rendering 2D and 3D graphics within any

compatible web browser

Provides low-level access to the GPU, enabling high-performance

rendering of 3D graphics

Basis for Libraries like Three.js

threeJS

Abstracts the complexities of WebGL with a more accessible API.

Includes scene graph, built-in geometries, materials, textures, lighting, and

animations.

Works seamlessly in all modern web browsers.

Extensive documentation, examples, and a large support network.

Examples

https://eyes.nasa.gov/apps/solar-system/#/home

https://neal.fun/design-the-next-iphone/

https://aloks-portfolio.netlify.app/

https://eyes.nasa.gov/apps/solar-system/#/home
https://neal.fun/design-the-next-iphone/
https://aloks-portfolio.netlify.app/

R3F

Combines React's declarative syntax with Three.js's 3D capabilities.

Uses JSX and React hooks to manage 3D scenes.

Leverages React components for reusable 3D objects and logic.

Integrates smoothly with existing React projects.

DREI

A growing collection of useful helpers and fully functional, ready-made

abstractions for @react-three/fiber.

https://github.com/pmndrs/react-three-fiber

Getting Started and
Setting Up

Setting Up Vite Project

Installing Vite and initializing a new project

Integrating React and R3F into the Vite setup

Basic Components

A scene that will contain objects

An object

A camera

A renderer

Basic Components

Scene:

The container for all 3D objects.

Geometry:

Defines the shape of 3D objects.

Material:

Defines the appearance (color, texture) of 3D objects.

Mesh:

Combines geometry and material to create a visible 3D object.

Example

Link

https://threejs.org/examples/?q=scene#webgl_multiple_scenes_comparison

Creating 3D
Scenes

Native threeJS

<body>

 <canvas class="webgl"></canvas>

 </body>

Native threeJS
// Canvas

const canvas = document.querySelector("canvas.webgl");

// Scene

const scene = new THREE.Scene();

// Object

const geometry = new THREE.BoxGeometry(1, 1, 1);

const material = new THREE.MeshBasicMaterial({ color: "red" });

const mesh = new THREE.Mesh(geometry, material);

scene.add(mesh);

Native threeJS
// Camera

const camera = new THREE.PerspectiveCamera(75, sizes.width /

sizes.height);

scene.add(camera);

// Renderer

const renderer = new THREE.WebGLRenderer({ canvas });

renderer.render(scene, camera);

R3F

<Canvas>

 <mesh >

 <torusKnotGeometry />

 <meshBasicMaterial />

 </mesh>

 </Canvas>

Axes Helper

The primary purpose of AxesHelper is to provide a visual reference for the

X, Y, and Z axes in your 3D scene.

OrbitControls

Purpose:

Enables user interaction with the 3D scene.

Enable users to rotate, zoom, and pan the camera around the 3D

scene.

Transformations

Positioning:

Changing an object's location in 3D space.

Rotating:

Adjusting an object's orientation around its axes.

Scaling:

Modifying an object's size along the X, Y, and Z axes.

Animations

Purpose:

Executes code on every frame render.

Basic Syntax:

Importing and using useFrame.

Animating Objects:

Changing properties like position, rotation, and scale.

Environment and
Staging

Lighting
Purpose:

Adds realism and depth to 3D scenes.

Types of Lights:

Ambient, Directional, Point, and Spotlights.

Properties:

Color, intensity, and position.

Shadow Configuration:

Enabling and configuring shadows for realism.

Types
Ambient Light:

Provides a general illumination that affects all objects equally.

Directional Light:

Simulates sunlight or other distant light sources.

Point Light:

Emits light in all directions from a single point, similar to a light bulb.

Spotlight:

Emits a cone of light in a specific direction, similar to a flashlight.

Shadows

Shadows add depth and realism to 3D scenes by simulating the way

light interacts with objects.

They help viewers understand the position and scale of objects

relative to each other and their environment.

Balancing shadow quality and performance is crucial.

Background

Purpose:

Sets the visual backdrop for the 3D scene.

Types of Backgrounds:

Solid color, gradient, image, and environment maps.

Models

Models

Incorporating complex 3D assets into your scene.

Models can represent anything from characters and vehicles to entire

environments.

Supported Formats: common formats like GLTF/GLB, OBJ, FBX.

Deployment

Deployment

Build Process:

Optimizing and building the project.

Deployment Platforms:

Vercel, Netlify, GitHub Pages, etc.

Thank you
@thecoollearner

