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Setting the Stage
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● Imagine a tech startup launching an AI-powered customer 
service chatbot. 

● Customers expectation?
Quick, accurate responses. 

● Measure of effectiveness? 
Comprehensive evaluation techniques:
● Accuracy
● Usability
● Reliability



Defining Objectives for Evaluation
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Infographic listing accuracy, bias mitigation, coherence, and 

reliability.

Objectives for evaluating AI :

● Accurate responses

● Unbiased content

● Coherent dialogues

● Robust reliability



BLEU and ROUGE Scores?

BLEU – n-gram precision score; staple for machine-translation 
checks.

ROUGE – n-gram / LCS recall; common in summarization.

Why? Fast, language-agnostic, no human labels required.



Real-life Limitations
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●  A chatbot response can be contextually accurate yet score low 

in BLEU. 

Scenario: Product Size Information

● Question: What is the size of this jacket?

● Response: 34

● BLEU Score: 0.016

● Reference Sentences: "it is xxl", "it is 34", "it is small"



Real-life Limitations
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Metrics must evolve beyond simple overlaps  to consider real 

conversational quality.

Scenario: Remote Work Policy

Reference: Employees are permitted to work remotely up to three days per 

week, subject to manager approval.

Response: Staff members are allowed to telecommute for a maximum of three 

days weekly, pending approval from their supervisors.

BLEU Score: 0.0



Traditional Metrics Overview
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● BLEU and ROUGE focus on N-Gram overlap. 

● Excel in translation and summarization 

● Struggle to assess context and deeper semantic meanings.



N-gram Overlap?
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● 1-gram (unigram): Single words like "cat," "runs," "fast"

● 2-gram (bigram): Two words together like "the cat," "runs fast," "very quickly"

● 3-gram (trigram): Three words together like "the black cat," "runs very fast"



Why N-gram Overlap Metrics Fall Short Today?
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● Only surface-level measure

● Easy to manipulate

● Ignores factuality & coherence

● Penalizes length & fluency



Modern Evaluation Frameworks
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Modern frameworks classify evaluation based on:

● Factual accuracy

● Semantic coherence

● Answer Relevance

● Context Precision

● Context Recall



Evaluating Factuality - FactScore
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● Checks for evaluating factual accuracy in text generated 

● Breaking down content into atomic facts and checking each one 

individually.

● Breaking down a generated text into "atomic facts" (individual pieces of 

information)

● Checking each atomic fact against a reliable knowledge source

● Calculating the percentage of facts that are supported by the knowledge 

source



How factuality evaluation works?
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The model-graded factuality check takes the following three inputs:

● Prompt: prompt sent to the LLM

● Output: text produced by the LLM

● Reference: the ideal LLM output, provided by the author of the eval
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Coherence with BERTScore
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● Generating contextual embeddings for each token in adjacent sentences
● Computing cosine similarity between these embeddings
● Identifying semantic relationships between sentences
● Measuring how well the semantic flow is maintained throughout the text



Addressing Toxicity and Bias
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Addressing toxicity and bias is crucial to prevent harmful interactions and 
ensure a positive user experience.

LangBiTE:
● Collects a subset of prompt templates from a prompt library
● For each prompt template, generates a test case
● Executes the prompts against the LLMs and evaluate responses
● Reports insights from the responses obtained from the LLM.



Addressing Toxicity and Bias
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Human-Centric Evaluation: From Pairwise 
Comparisons to Chatbot Arena
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● Human judges notice nuance—tone, coherence, 

helpfulness—that automated metrics miss.

● Pairwise wins > absolute scores

● Probabilistic ranking (Bradley-Terry / Elo)

● Reveals gaps with automated metrics

● BLEU/ROUGE may rate two outputs equal, while humans 

strongly prefer one
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LLM as a Judge and Self-Evaluation
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LLM as a Judge:

● Context-Awareness: Judges can interpret nuanced meanings and adapt to specific domains

● Scalability: Capable of handling large datasets without the time or resource constraints of human reviewers

● Consistency: Free from the variability often introduced by human evaluators



Automated LLM Evaluation
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Why Automated Evaluation Matters:

● Ensures consistent quality across model iterations

● Provides objective measurement of performance

● Enables efficient testing at scale

● Supports continuous improvement cycles



Automated LLM Evaluation
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Key Technologies:

● OpenAI Evals Framework

● G-Eval (Generative Evaluation approach)

● RAG Evaluation Frameworks

● Evaluation datasets (eval sets)



OpenAI Evals Framework
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Core Components:

● Custom evaluation pipelines for specific use cases

● Standardized testing methodology

● Integration with OpenAI dashboard



OpenAI Evals Framework
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OpenAI Evals Framework
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[2025-03-25 19:44:54,028] [_client.py:1026] HTTP Request: POST  
 84%|████████████████████████████████████       | 21/25 [00:11<00:01,   
3.27it/s][2025-03-25 19:44:56,420] [_client.py:1026] HTTP Request: POST  
https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 88%|█████████████████████████████████████ ▊     | 22/25 [00:12<00:01,   
1.75it/s][2025-03-25 19:44:56,984] [_client.py:1026] HTTP Request: POST  
https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 92%|███████████████████████████████████████▌   | 23/25 [00:13<00:01,   
1.76it/s][2025-03-25 19:44:57,370] [_client.py:1026] HTTP Request: POST  
https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
 96%|█████████████████████████████████████████ ▎ | 24/25 [00:13<00:00,   
1.94it/s][2025-03-25 19:44:59,589] [_client.py:1026] HTTP Request: POST  
https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
100%|███████████████████████████████████████████| 25/25 [00:15<00:00,  1.60it/s]
[2025-03-25 19:44:59,607] [record.py:360] Final report: {'counts/Correct': 20,  
'counts/Incorrect': 5, 'score': 0.8}. Logged to  
/tmp/evallogs/240327024443FACXGMKA_gpt-3.5-turbo_spider-sql.jsonl
[2025-03-25 19:44:59,608] [oaieval.py:229] Final report:
[2025-03-25 19:44:59,608] [oaieval.py:231] counts/Correct: 20
[2025-03-25 19:44:59,608] [oaieval.py:231] counts/Incorrect: 5
[2025-03-25 19:44:59,608] [oaieval.py:231] score: 0.8
[2025-03-25 19:44:59,640] [record.py:349] Logged 75 rows of events to  
/tmp/evallogs/240327024443FACXGMKA_gpt-3.5-turbo_spider-sql.jsonl: insert_time=27.915ms



OpenAI Evals Framework
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G-Eval Methodology
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● User-defined prompt (Task Introduction + Evaluation Criteria)

● Automatic Chain-of-Thought reasoning

● Structured scoring function



G-Eval Methodology
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G-Eval Methodology
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G-Eval Methodology
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RAG Evaluation
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RAG Evaluation
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ContextualPrecisionMetric: your 
retriever ranks relevant nodes higher 
than irrelevant ones.

ContextualRecallMetric: how well the 
embedding model in your retriever 
captures and retrieves relevant 
information based on input context.

ContextualRelevancyMetric: text 
chunk size and top-K of your retriever 
retrieve relevant information with 
minimal irrelevancies.



RAG Evaluation
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RAG Evaluation
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Checklist for Building Benchmark Ecosystems
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1. Define Clear Objectives

2. Develop Diverse Evaluation Methods

3. Create Representative Datasets

4. Implement Iterative Evaluation

5. Establish Baseline Comparisons

6. Leverage AI-Assisted Evaluation



Scenario Application - Customer Service AI
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For a customer service AI application, relying solely on BLEU and ROUGE scores is insufficient. 

Technical Performance Assessment

● NLU Component

● Dialogue Management

● Response Generation Evaluation

Customer Experience Metrics

● Response Time

● Conversation Quality

● Follow-up Cadence

Business Impact Measurement

● Conversion Rates 

● Resolution Time

● Cost Savings



What do we get with new evaluation techniques
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Trustworthy Outputs
 Factual-accuracy checks spot hallucinations before they reach users.

Readable & Logical Answers
 Semantic-coherence scoring enforces clear, internally consistent 
reasoning.

Stronger Task Alignment
 Answer-relevance metrics ensure the model stays on-prompt.

Signal-to-Noise Control
 Context-precision penalises unnecessary or invented details.

Complete Coverage
 Context-recall rewards including every key fact from the source.



What do we get with new evaluation techniques
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A multidimensional scorecard that pinpoints what to fix and boosts 
real-world user satisfaction!



Thank you!
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Alok Ranjan                                                    Saurabh Suman


