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● Founded in 2007

● 700+ million users

● 18+ million paying users

● 1 T+ pieces of content

● Billions of files uploaded per day

Dropbox



Unstructured Logs
● Raw Data: Logs without a defined schema.

● Sources: From first-party code & third-party debug files (e.g., /var/log/dropbox).

● Contrast: Unlike structured logs (e.g., Hive records, traces)

● Use Case: Real-time troubleshooting.



● Unstructured logs stored in /var/logs/

● ssh individual box

● Host rotated in 7 days

● Migration from standalone hosts to containers

● Containers are ephemeral

Problem Statement



● Provide a secure, ergonomic interface for analyzing unstructured logs

● Replace manual, on-host SSH log analysis for production service owners

● Ingest the complete firehose of DBX production logs without modifying application code

● Lay the groundwork for future integration with logs from acquisitions and corporate assets

High-Level Requirements



Requirements
Reliability Security

Retention: 1-week log storage mTLS: Deny-by-default enforcement

Throughput: 150TB/day Access Control: Service-based segmentation

Latency: p99 ingestion <30s, queries <10s Encryption: Secure storage with key management

Availability: 99% log durability & access PII Protection: Detection, filtering & redaction



Non Goals
● Log Format: Don’t mandate changes

● Observability: Not going to replace structured logging/tracing/metrics

● Analytics: Not for batch or historical analysis

● Enforcement: No mandated logging practices



Evaluation Metrics
● Cost: Total cost of ownership (OpEx/CapEx, contract risks)

● Performance: Ingestion rates, query latency & scalability

● UX & Query: Rich query engine, familiar Grafana integration

● Integration: Ease of connecting with existing observability tools

● Security: Data protection, sensitive data exposure risk



Do Nothing (Status Quo)
● Overview: Continue existing SSH-based log analysis

● Pros: No additional investment

● Cons: Manual, non-scalable, inefficient troubleshooting

● Outcome: Inadequate for modern observability needs



Evaluation of Logging Services
Solution Overview Pros Cons Outcome

Externally Managed 
SaaS

Fully managed logging 
service by a third party

Reduces in-house 
management overhead

High annual cost; 
potential security risks

Rejected due to cost 
and security concerns

Managed Cloud 
Logging

Managed search and 
logging on a cloud 
framework

Mature, scalable 
technology

Higher operational 
costs; complex 
configuration affecting 
UX

Not cost-effective; UX 
challenges

Self-Hosted 
Enterprise

Enterprise-grade log 
management on-
premise

Rich feature set; 
robust vendor support

Expensive licensing 
and infrastructure 
demands

Too costly and 
cumbersome for our 
scale

Build Your Own 
Logging

Custom-developed 
solution

Full control; tailored 
features

High engineering 
effort; slow time-to-
value

Not viable given rapid 
open-source advances



Grafana Loki
● Cost-effective: Open-source, low TCO

● High-Performance: Optimized for DBX-scale log ingestion and querying

● Grafana Integration: Native, unified observability interface

● Scalable Architecture: Distributed components



What is Loki?
● Open source

● Horizontally scalable

● Highly Available

● Multi tenant

● Prometheus inspired

● Log aggregation System



Architecture



● Does not indexes the text of the log

● Loki indexes metadata

● It groups log entries into streams and indexes labels

● Faster ingestion and queries with minimal infrastructure

Loki Scalability



Logs
2025-02-01T09:02:03.123456789Z    {service=”dummy_service”, node_id=”ex_node_1”}      GET /about

Timestamp
With nanosecond precision

Prometheus-style Labels
Key-value pairs

Content
Log line



Logs - Stream

A log stream is stream of log entries with exact same label set

2025-02-01T09:02:03.000Z    {service=”dummy_service”, node_id=”ex_node_1”}      GET /about
2025-02-01T09:02:04.000Z    {service=”dummy_service”, node_id=”ex_node_1”}      GET /
2025-02-01T09:02:06.000Z    {service=”dummy_service”, node_id=”ex_node_1”}      GET /help

2025-02-01T09:02:03.000Z    {service=”dummy_service”, node_id=”ex_node_2”}      GET /files/1
2025-02-01T09:02:03.000Z    {service=”dummy_service”, node_id=”ex_node_2”}      GET /files/2
2025-02-01T09:02:03.000Z    {service=”dummy_service”, node_id=”ex_node_2”}      GET /files/1



Logs Storage - Chunks
● Streams are stored in separate chunks

● Sorted in timestamp order

● Chunks are filled till they reach a target size or timeout

● Once full, they’re compressed and flushed to Object Store

2025-02-01T09:02:03.000Z    GET /about
2025-02-01T09:02:04.000Z    GET /
2025-02-01T09:02:06.000Z    GET /help

chunk #1 {service=”dummy_service”, node_id=”ex_node_1”}



Logs - Query

{service=”dummy_service”, node_id=”ex_node_1”}

{service=”dummy_service”, node_id=”ex_node_2”}

Log Stream Chunks

T1-T5

T6-T8

T9-T12

T1-T3

T4-T6

T7-T12



Logs - Query

{service=”dummy_service”, node_id=”ex_node_1”}

{service=”dummy_service”, node_id=”ex_node_2”}

Log Stream Chunks

T1-T5

T9-T12

T6-T8

T1-T3

T4-T6

T7-T12

Query: {service=”dummy_service”} start=T5 end=T7



● Be mindful of label selection

● Avoid high-cardinality labels like trace_id, user_id, path, and status.

● Favor low-cardinality labels such as cluster, app, and filename for efficient indexing

● Using log level (4), status (3), and path (3) yields 36 unique streams

Label Cardinality



Dropbox-specific Loki



Loki Architecture



● ~10 GB/s logs processed

● 30 days of logs == ~10 petabytes stored in object storage

● ~1000 tenants

● <1 query per second

Loki at Dropbox: At a Glance



● Replaced S3 with internal storage to reduce costs (esp. data transfer)

● Lower costs → Increased log retention (1 week → 4 weeks)

● Performance differences:

○ S3 scales gradually; large queries cause timeouts

○ Internal storage has reserved capacity; avoids scaling issues

● Large index files still stored in S3

S3 Replacement



● Loki isolates access/storage per tenant

● Dropbox: Tenant = service

● High-volume service split by project

Multitenancy



● Previously: Production SSH access → log viewing

● Tenant (service) matches existing permission model

● Some global services are accessible by everyone

● Custom query auth proxy handles permissions (avoids Grafana RBAC complexity)

Auth: What, Who & How?



● Team A wants to share access for their service’s logs to Team B

● Team B must request permission to the service logs for their group

● Because the permission is owned by the logging team, only we can approve

● During an incident, this delay can be costly

Auth: Sharing Challenges



● Breakglass allows a user with a justified reason to gain temporary access to any service’s logs

● Audit trail and safeguards in place

Auth: Breakglass



● Run Loki in two data centers in separate geographic regions

● Same object storage is used in both regions

● Logs and queries are routed to the active region using DNS

Multi-homing



Scaling Challenges



● Write Ahead Log stored on ingesters' disks

● Used to recover logs when ingester exits before flushing

● At Dropbox, disabled to prioritize availability over durability

Ingester WAL



● Conservative default limits set

● Alerts notify owners on breaches

● Tenants can override via config file

● Config distributed via KV store

● Loki reloads settings dynamically

Per-tenant Ingestion Rate Limits



● Ingesters shard log streams and own a range in the hash ring

● Ingester registers their range and health status in the ring stored in a distributed KV store

● Distributor uses ring to route log stream to ingester + replicate to other ingesters

Hash Ring



2025-02-01T09:02:03.000Z    {service=”dummy_service”, node_id=”ex_node_1”}      GET /about

Ingester Hash Ring Example

a6965cd7



● We original used etcd as backing KV store for Loki hash ring

● etcd: distributed, consistent KV store

● Often used for coordination and configuration, default for k8s

● Now widely used at Dropbox

Hash Ring: etcd



● Ingester sends heartbeat & updates ring every minute

● Ring updates occur on join/leave events

● etcd stores the ring as a single binary blob; updates use read + CAS

● RF=3 with 67 ingesters per factor = 201 total ingesters

Hash Ring: etcd Write Contention 



● Deployments take hours, ingesters are pushed sequentially

● Frequent availability alerts during ingester pushes

● Single point of failure: etcd outages cause disruptions

Hash Ring: etcd Challenges



● Now default in Loki and other Grafana projects

● Peer-to-peer gossip protocol

● Each update is only the delta, not the entire ring

● Eventually consistent

Hash Ring: etcd → memberlist



● Log indexes determine query plan: how many log chunks to fetch

● Index format changed from BoltDB to TSDB

● TSDB based on Prometheus TSDB, ideal for labels

● Much better query performance after migration

Index: BoltDB → TSDB



● Goal: Scale and enhance observability at Dropbox

● Challenges: Manual SSH analysis of unstructured logs

● Approach: Evaluate multiple logging solutions

● Solution: Adopt Grafana Loki for cost-effective, high-performance logging

● Result: Improved retention, reduced costs, and efficient multi-tenant access

Summary



Thank You
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