
Alok Ranjan

From Fragmented
Logs to Unified
Insights

0501 Introduction & Context Deep Dive into Loki’s Architecture

0602 Observability Challenges at Dropbox Operational and Scaling Challenges

0703 Evaluation of Logging Solutions Integration with Dropbox Infrastructure
& Cost Optimizations

0804 Why Grafana Loki? Conclusion & Q&A

Agenda

Alok Ranjan
Engineering Manager, Storage Platform

● Master's from Carnegie Mellon University

● Prior experience: Big Switch Networks,

VMware, Cisco

● Focus: Storage systems, scalable

infrastructure, Telemetry

● Interested in AI/ML infrastructure challenges

● Founded in 2007

● 700+ million users

● 18+ million paying users

● 1 T+ pieces of content

● Billions of files uploaded per day

Dropbox

Unstructured Logs
● Raw Data: Logs without a defined schema.

● Sources: From first-party code & third-party debug files (e.g., /var/log/dropbox).

● Contrast: Unlike structured logs (e.g., Hive records, traces)

● Use Case: Real-time troubleshooting.

● Unstructured logs stored in /var/logs/

● ssh individual box

● Host rotated in 7 days

● Migration from standalone hosts to containers

● Containers are ephemeral

Problem Statement

● Provide a secure, ergonomic interface for analyzing unstructured logs

● Replace manual, on-host SSH log analysis for production service owners

● Ingest the complete firehose of DBX production logs without modifying application code

● Lay the groundwork for future integration with logs from acquisitions and corporate assets

High-Level Requirements

Requirements
Reliability Security

Retention: 1-week log storage mTLS: Deny-by-default enforcement

Throughput: 150TB/day Access Control: Service-based segmentation

Latency: p99 ingestion <30s, queries <10s Encryption: Secure storage with key management

Availability: 99% log durability & access PII Protection: Detection, filtering & redaction

Non Goals
● Log Format: Don’t mandate changes

● Observability: Not going to replace structured logging/tracing/metrics

● Analytics: Not for batch or historical analysis

● Enforcement: No mandated logging practices

Evaluation Metrics
● Cost: Total cost of ownership (OpEx/CapEx, contract risks)

● Performance: Ingestion rates, query latency & scalability

● UX & Query: Rich query engine, familiar Grafana integration

● Integration: Ease of connecting with existing observability tools

● Security: Data protection, sensitive data exposure risk

Do Nothing (Status Quo)
● Overview: Continue existing SSH-based log analysis

● Pros: No additional investment

● Cons: Manual, non-scalable, inefficient troubleshooting

● Outcome: Inadequate for modern observability needs

Evaluation of Logging Services
Solution Overview Pros Cons Outcome

Externally Managed
SaaS

Fully managed logging
service by a third party

Reduces in-house
management overhead

High annual cost;
potential security risks

Rejected due to cost
and security concerns

Managed Cloud
Logging

Managed search and
logging on a cloud
framework

Mature, scalable
technology

Higher operational
costs; complex
configuration affecting
UX

Not cost-effective; UX
challenges

Self-Hosted
Enterprise

Enterprise-grade log
management on-
premise

Rich feature set;
robust vendor support

Expensive licensing
and infrastructure
demands

Too costly and
cumbersome for our
scale

Build Your Own
Logging

Custom-developed
solution

Full control; tailored
features

High engineering
effort; slow time-to-
value

Not viable given rapid
open-source advances

Grafana Loki
● Cost-effective: Open-source, low TCO

● High-Performance: Optimized for DBX-scale log ingestion and querying

● Grafana Integration: Native, unified observability interface

● Scalable Architecture: Distributed components

What is Loki?
● Open source

● Horizontally scalable

● Highly Available

● Multi tenant

● Prometheus inspired

● Log aggregation System

Architecture

● Does not indexes the text of the log

● Loki indexes metadata

● It groups log entries into streams and indexes labels

● Faster ingestion and queries with minimal infrastructure

Loki Scalability

Logs
2025-02-01T09:02:03.123456789Z {service=”dummy_service”, node_id=”ex_node_1”} GET /about

Timestamp
With nanosecond precision

Prometheus-style Labels
Key-value pairs

Content
Log line

Logs - Stream

A log stream is stream of log entries with exact same label set

2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_1”} GET /about
2025-02-01T09:02:04.000Z {service=”dummy_service”, node_id=”ex_node_1”} GET /
2025-02-01T09:02:06.000Z {service=”dummy_service”, node_id=”ex_node_1”} GET /help

2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_2”} GET /files/1
2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_2”} GET /files/2
2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_2”} GET /files/1

Logs Storage - Chunks
● Streams are stored in separate chunks

● Sorted in timestamp order

● Chunks are filled till they reach a target size or timeout

● Once full, they’re compressed and flushed to Object Store

2025-02-01T09:02:03.000Z GET /about
2025-02-01T09:02:04.000Z GET /
2025-02-01T09:02:06.000Z GET /help

chunk #1 {service=”dummy_service”, node_id=”ex_node_1”}

Logs - Query

{service=”dummy_service”, node_id=”ex_node_1”}

{service=”dummy_service”, node_id=”ex_node_2”}

Log Stream Chunks

T1-T5

T6-T8

T9-T12

T1-T3

T4-T6

T7-T12

Logs - Query

{service=”dummy_service”, node_id=”ex_node_1”}

{service=”dummy_service”, node_id=”ex_node_2”}

Log Stream Chunks

T1-T5

T9-T12

T6-T8

T1-T3

T4-T6

T7-T12

Query: {service=”dummy_service”} start=T5 end=T7

● Be mindful of label selection

● Avoid high-cardinality labels like trace_id, user_id, path, and status.

● Favor low-cardinality labels such as cluster, app, and filename for efficient indexing

● Using log level (4), status (3), and path (3) yields 36 unique streams

Label Cardinality

Dropbox-specific Loki

Loki Architecture

● ~10 GB/s logs processed

● 30 days of logs == ~10 petabytes stored in object storage

● ~1000 tenants

● <1 query per second

Loki at Dropbox: At a Glance

● Replaced S3 with internal storage to reduce costs (esp. data transfer)

● Lower costs → Increased log retention (1 week → 4 weeks)

● Performance differences:

○ S3 scales gradually; large queries cause timeouts

○ Internal storage has reserved capacity; avoids scaling issues

● Large index files still stored in S3

S3 Replacement

● Loki isolates access/storage per tenant

● Dropbox: Tenant = service

● High-volume service split by project

Multitenancy

● Previously: Production SSH access → log viewing

● Tenant (service) matches existing permission model

● Some global services are accessible by everyone

● Custom query auth proxy handles permissions (avoids Grafana RBAC complexity)

Auth: What, Who & How?

● Team A wants to share access for their service’s logs to Team B

● Team B must request permission to the service logs for their group

● Because the permission is owned by the logging team, only we can approve

● During an incident, this delay can be costly

Auth: Sharing Challenges

● Breakglass allows a user with a justified reason to gain temporary access to any service’s logs

● Audit trail and safeguards in place

Auth: Breakglass

● Run Loki in two data centers in separate geographic regions

● Same object storage is used in both regions

● Logs and queries are routed to the active region using DNS

Multi-homing

Scaling Challenges

● Write Ahead Log stored on ingesters' disks

● Used to recover logs when ingester exits before flushing

● At Dropbox, disabled to prioritize availability over durability

Ingester WAL

● Conservative default limits set

● Alerts notify owners on breaches

● Tenants can override via config file

● Config distributed via KV store

● Loki reloads settings dynamically

Per-tenant Ingestion Rate Limits

● Ingesters shard log streams and own a range in the hash ring

● Ingester registers their range and health status in the ring stored in a distributed KV store

● Distributor uses ring to route log stream to ingester + replicate to other ingesters

Hash Ring

2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_1”} GET /about

Ingester Hash Ring Example

a6965cd7

● We original used etcd as backing KV store for Loki hash ring

● etcd: distributed, consistent KV store

● Often used for coordination and configuration, default for k8s

● Now widely used at Dropbox

Hash Ring: etcd

● Ingester sends heartbeat & updates ring every minute

● Ring updates occur on join/leave events

● etcd stores the ring as a single binary blob; updates use read + CAS

● RF=3 with 67 ingesters per factor = 201 total ingesters

Hash Ring: etcd Write Contention

● Deployments take hours, ingesters are pushed sequentially

● Frequent availability alerts during ingester pushes

● Single point of failure: etcd outages cause disruptions

Hash Ring: etcd Challenges

● Now default in Loki and other Grafana projects

● Peer-to-peer gossip protocol

● Each update is only the delta, not the entire ring

● Eventually consistent

Hash Ring: etcd → memberlist

● Log indexes determine query plan: how many log chunks to fetch

● Index format changed from BoltDB to TSDB

● TSDB based on Prometheus TSDB, ideal for labels

● Much better query performance after migration

Index: BoltDB → TSDB

● Goal: Scale and enhance observability at Dropbox

● Challenges: Manual SSH analysis of unstructured logs

● Approach: Evaluate multiple logging solutions

● Solution: Adopt Grafana Loki for cost-effective, high-performance logging

● Result: Improved retention, reduced costs, and efficient multi-tenant access

Summary

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

