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Kubernetes is great (until you have to troubleshoot )
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"The problem with logs is that they require
SENSER more logs, and rarely from a single place"




Challenges with the traditional observability toolkit

0]

Metrics

Track trends but lack system
views and context.

What'’s causing this spike in

CPU usage?
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Logs

“Coarse,” provide granular
detail but are fragmented.

What are the downstream

effects of an error in this
pod?

et

Traces

Show service interactions

but need instrumentation.

We’'re flying blind on the

services we haven’t
instrumented...




Real-time topology provides the context required to
eliminate blind spots and troubleshoot, fast.
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What it is

A live map of system relationships (pods,
services, networks)

Why it matters

Connect individual data points into a
full-system view

How it works

Continuously updates to reflect real-time
changes (every new service, every
deployment)



Real-time topology provides the context required to
eliminate blind spots and troubleshoot, fast.
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https://docs.google.com/file/d/1s3UxYwqa3kcSIIgs1FfxjX6pAo11o3sC/preview

Use case #1: Probe
readiness failure

Insight Report

The scenario

e Service Level Objective i Related changes and deployments
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A stateful application in Kubernetes fails readiness
probes due to high disk I/O, leading to pods being
repeatedly restarted by the kubelet. Without proper
visibility, it's difficult to correlate the high disk usage with
other factors like database queries or backup operations.

How real-time topology helps :

Mapping pod dependencies and resource usage,
enabling teams to identify the root cause of the disk 1/0
spike and adjust the probe configurations or workload
scheduling.
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Use case #2: Throttling
In autoscaling

The scenario

An application under high traffic triggers Horizontal Pod
Autoscaling (HPA), but new pods experience throttling
due to CPU limits set too low. This slows down traffic
handling and results in degraded performance.

How real-time topology helps :

Visualizing resource allocation and pod scaling behavior,
enabling teams to adjust resource requests and limits to
align with the workload and improve scaling efficiency.
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Use case #3: Misconfigured
network policies

Insight Report
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A microservice deployed in Kubernetes fails to
communicate with its dependent services due to overly
restrictive Network Policies. The lack of detailed logs or
visibility into blocked connections makes it difficult to
diagnose the issue.
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How real-time topology helps :

Mapping service-to-service communication paths and
highlighting blocked connections, enabling teams to
update Network Policies and restore communication
between services.
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What enables real-time topology

WAeBPF  + %"
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What is eBPF?

eBPF (extended Berkeley Packet Filter) is a Linux kernel feature that
allows safe, low-level instrumentation and monitoring.

I&a  Traffic analysis: Trace network requests, messages,

and data flows. Why it matters

Enables deep observability
directly from the kernel, making it

@» Infra, App & Performance monitoring: Observe
system calls, resource usage, and latency in

: invaluable for complex,
real-time.

distributed environments.

‘7 Security auditing: Detect anomalies or
unauthorized access at a granular level.
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Why eBPF is ideal for distributed systems

é Low-latency monitoring. Capturesand =~ "000000808
displays real-time insights without hindering © 9 $e8seees
system performance. T2 9 998
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!. Improved efficiency. Reduces need for o e
multiple diagnostic tools, centralizing B e [ s e (G ..
observability with eBPF. e T o e

L, Scalability. Adapts to cloud-native and o
microservices architectures, providing a EETT—
consistent observability approach. T —
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Auto-discovery and mapping of your environment
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Al capabilities that use Kubernetes metadata and traffic inspection to
discover dependencies and create a dynamic service graph — without

requiring manual updates.



Common pitfalls (and how to avoid them)

® Incomplete instrumentation: Missing critical data like kubelet logs, API
server events, or container runtime metrics leaves significant gaps in the
topology, reducing its usefulness. (Technologies like eBPF can help.)

@ Stale topology maps. Kubernetes environments are constantly changing. If
topology updates aren’'t automatic and real-time, you risk basing decisions
on outdated information.

@ Assuming topology alone solves everything. Topology mapping is powerful
for troubleshooting — but by itself rarely a “smoking gun” in root cause analysis.

(This is where AlOps shines.)
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Tips for getting started

® Leverage Kubernetes metadata. Use tools that automatically pull data
from Kubernetes-native sources like pod labels, ConfigMaps, and events to

build accurate, context-rich maps.

& Automate topology maps. Choose solutions that dynamically update the
topology to keep up with Kubernetes’ rapid scaling and frequent state

changes.

@ Avoid context-building pitfalls. Begin with critical applications where
better visibility will have the greatest operational benefit, then expand as

you refine your process.
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Thank you!



