Kubernetes...
Minus the Blind Spots

Solving K8s Observability Challenges with Real-Time Topology

Conf42 DevOps
January 2025

Today’s Roadmap

' Kubernetes is great (until you have to
troubleshoot)

° Challenges with the traditional
observability toolkit

@ Real-time topology mapping:
what, why, how

® Real-world use cases

@ eBPF as real-time topology enabler

@ Getting started

€ SENSER

Kubernetes is great (until you have to troubleshoot)

® e Amir w

frontend | X

Blurred line between app and infra issues

Time Range: Sep 18, 2024, 6:15 AM - Scp 18, 2024, 8:115 AM [

Ephemeral environments :

at

frontend-

1802, serverEndpoint: redis-cart:6379, conn-sec: ne., aoc: 0. ma: 1/1/0, mgr: 10 of 10 available. client
Name: cartservica-7389787h95- k6hx(SF. Redisv2.6.122.38350), I0CP: (Busy-0,Frae-1000.Min-1
= Stap Max-1000), WORKER: (Busy=1,Free~32766Min-1 Max-32767), POOL: (Threads~6,Queueditems-

o m I ex n etwo r kl n o re D N S] 0,Completeditems=378638534 Timers=6), v- 2.6.122.38350 (Please take a losk at thiz article for 50
C C y me comman client-side issucs that can cause timeauts: https:fistackexchange github.io/StackExchan

geRedi=Timeouts)n ——Ww003e StockExchange.R

1892024

o 09:1657.397 server arror

Show Mare

[] (*error*could not retrieve cort: rpc erar: code = FoiledPrecondition dasc - Con't access cart storag
ku b e - ro ‘ N I I u I n S etc e. StackFxchange Redis RadisConnectionException: The message timad out in the backlog attamptin
, ,] g to send bacause no connection became available {5000ms) - Last Connection Exception: it was no

t possible to connect to the redis server(s). ConnectTimeout, commond=HMGET, timeaut: 5000, inst:

Initiafizing, in: 0, last-in: 0, cur

0, qu: 3, gs: 0, aw: False, bw: CheckingForTimeout, r= NotStarted,

in: 0, sync-ops: 0, async-ops: 22281802, serverEndpoint: redis-cart:6379, conn-sec: nfo, soc: 0, me

2 v magr: 10 of 10 availsble, dientName: cartservice -7389787b95-kEhvx|SE.Redis-v2.6.122.3835

0). 10CF: {Busy=0,Free =1 Max=1000). WORKER: (Busy- 2764 Min=1Max=3276

frontend- 7). POOL: (Threads=6,Queveditems=1Completediterns=378638534,Timers=/), v. 26.122.38350 (M
L] [] 1892024 56d8b595d8- server s eose toke a look ot this o-l(‘g for some common client-side Issues that can cause timeouts: httpsifist

S q re re S 0 u rce S a n n 0 I Sy n e I g 0 rs 091657.397 o > ockexchange.github ia/StackExchange Redis/Timeouts)in ---u003e StackExchange Redis RedisCon
nectionException: it was not possible to connect to the redis server(s), ConnectTimeoutin --- End of i

nnar exception stack trace ---\n at Micrasoft Extensions Caching StackExchangeRedis RedisCache G
ctAndRefreshAsync{String key, Booloan get!

= Caching.StackExchangeRedi= RedisCache GetAsync(String key, CancellationToken token)\n at cart
(String userld) in fJopp/cartstore/RedisCartStore.cx:line
*'hitp.req.pat

t

ata, CancellationTaken token}in at Microzaft. Extension

service cartstore RedisCartStore. GetCortAsy
90", "hitpreq.id":"63628e84-7e2b-4033-063b-cd4b7 IdT6dLI2", hittp.reg.method ™
"' 30b70208-0c7d-47dc 954887 debeel” "severil

ressoge Mrequest e

» B
B q C OX CO n tq I n e rs Groinboiidl {"httpreq.id":"5¢21fce8 - 5184. 4734820 cebeBccfbcdd”, "hitp.reqg method™:"GET" "hitp.req path™"fpr
frontel

1892024 g R ko OHSH2ZYFIIGMEN' Thitp.resp bytes" 6166, hitp resp.status" 500, hitp.respiook_ms"5299 mezsa
09:16:56.396 ;l = gl MENOWN - perrequest complete” "session” cobebd 1b- 1669-4be7-9452-8c1767a48bBa","severity” 'debug”. "t
qpx mestamp”"2024-09- 18T06:15:56.3969368282')

"arror 'could rat retriove cart: rpc emrar: cade - FoiledPracondition dasc - Can't access cart staras
q

©. StackExchange.Redis RadisConnectionExcaption: The message timad out in the backlog attemptin
gto send bacause no connection became available (5000ms) - Last Connection Excoption: was no
t possible to cannect to the redis server(z). ConnectTimeout, command=HMGET, timeaut: 5000, inst:
o snterl 0, qu: 5, gs: 0, aw: False, bw: CheckingForTimeout, last-in: 0, cur-in: 0, sync-ops: 0, async-ops: 2228
fronten
92024 802, serverEndpaint: redis-cart:6379, cor
189202 ek o T e 1802, UKL.FV boint redis-ourt6379, cor

5 nescss a0 -

I Automation complexity :

available, client
.

ooc: 0, me: 1/4/0, mgr: 10 of 10

~ 7ThenTaTLAE Lol LA E 17T BAEAL KA (D e EeemtARA L

"The problem with logs is that they require
SENSER more logs, and rarely from a single place"

Challenges with the traditional observability toolkit

0]

Metrics

Track trends but lack system
views and context.

What'’s causing this spike in

CPU usage?

€ SENSER

Logs

“Coarse,” provide granular
detail but are fragmented.

What are the downstream

effects of an error in this
pod?

et

Traces

Show service interactions

but need instrumentation.

We’'re flying blind on the

services we haven’t
instrumented...

Real-time topology provides the context required to
eliminate blind spots and troubleshoot, fast.

(@ prod_cluster

& App Traffic

v & Atlos-prod-EU1 ’ o a o
> & RegionalStores-1 ’ o
> @& RegionalStores-1 ‘ /‘.i)\
v @& RegionalStores-1 frontend) /’“) " _/ k/—‘\‘
B users.pagevisits _,/

I £ users.pogevisits @ i I /) /ﬁ\
> # Atlos-prod-EU1 7 I\~_/J
> # Atlos-prod-EU1 [§€/ 7
> & Atlas-prod-EU1 @;\7\) (;\

& N

€ SENSER

What it is

A live map of system relationships (pods,
services, networks)

Why it matters

Connect individual data points into a
full-system view

How it works

Continuously updates to reflect real-time
changes (every new service, every
deployment)

Real-time topology provides the context required to
eliminate blind spots and troubleshoot, fast.

e B mmes | ponsionter 0 D OO ®O@®EOO®E

External Services @
I AWS-ECOMMERCE

Internet

AZURE-ECOMMERCE

€ SENSER

https://docs.google.com/file/d/1s3UxYwqa3kcSIIgs1FfxjX6pAo11o3sC/preview

Use case #1: Probe
readiness failure

Insight Report

The scenario

e Service Level Objective i Related changes and deployments

Evslaorson 4 &
: . Component Nome Ceploymest time

cccccccccc

A stateful application in Kubernetes fails readiness
probes due to high disk I/O, leading to pods being
repeatedly restarted by the kubelet. Without proper
visibility, it's difficult to correlate the high disk usage with
other factors like database queries or backup operations.

How real-time topology helps :

Mapping pod dependencies and resource usage,
enabling teams to identify the root cause of the disk 1/0
spike and adjust the probe configurations or workload
scheduling.

& SENSER

Use case #2: Throttling
In autoscaling

The scenario

An application under high traffic triggers Horizontal Pod
Autoscaling (HPA), but new pods experience throttling
due to CPU limits set too low. This slows down traffic
handling and results in degraded performance.

How real-time topology helps :

Visualizing resource allocation and pod scaling behavior,
enabling teams to adjust resource requests and limits to
align with the workload and improve scaling efficiency.

& SENSER

13 cartservice Initial

o Service Level Objective

Insight Report

Evzleaon

cccccccccc

i Related changes an

Use case #3: Misconfigured
network policies

Insight Report

13 cartservice Initial

The scenario

o Service Level Objective i Related changas an

Evzleaon

A microservice deployed in Kubernetes fails to
communicate with its dependent services due to overly
restrictive Network Policies. The lack of detailed logs or
visibility into blocked connections makes it difficult to
diagnose the issue.

cccccccccc

How real-time topology helps :

Mapping service-to-service communication paths and
highlighting blocked connections, enabling teams to
update Network Policies and restore communication
between services.

& SENSER

What enables real-time topology

WAeBPF + %"

€9 SENSER

What is eBPF?

eBPF (extended Berkeley Packet Filter) is a Linux kernel feature that
allows safe, low-level instrumentation and monitoring.

I&a Traffic analysis: Trace network requests, messages,

and data flows. Why it matters

Enables deep observability
directly from the kernel, making it

@» Infra, App & Performance monitoring: Observe
system calls, resource usage, and latency in

: invaluable for complex,
real-time.

distributed environments.

‘7 Security auditing: Detect anomalies or
unauthorized access at a granular level.

N9 SENSER

Why eBPF is ideal for distributed systems

é Low-latency monitoring. Capturesand =~ "000000808
displays real-time insights without hindering © 9 $e8seees
system performance. T2 9 998

e e 6

4"y Enhanced visibility. Sees all network 00000
interactions and system calls to provide L o0 ©¢
comprehensive insights. - ' -~

0 QO | - S —

!. Improved efficiency. Reduces need for o e
multiple diagnostic tools, centralizing B e [s e (G ..
observability with eBPF. e T o e

L, Scalability. Adapts to cloud-native and o
microservices architectures, providing a EETT—
consistent observability approach. T —

mmmmm

€ SENSER

Auto-discovery and mapping of your environment

€ SENSER

prectoninr 0 () @ 0 O @ O @ ® ©

e\
(@)

@ o6

eeeeeo

oo @90
i e
o

{ [l]:

Al capabilities that use Kubernetes metadata and traffic inspection to
discover dependencies and create a dynamic service graph — without

requiring manual updates.

Common pitfalls (and how to avoid them)

® Incomplete instrumentation: Missing critical data like kubelet logs, API
server events, or container runtime metrics leaves significant gaps in the
topology, reducing its usefulness. (Technologies like eBPF can help.)

@ Stale topology maps. Kubernetes environments are constantly changing. If
topology updates aren’'t automatic and real-time, you risk basing decisions
on outdated information.

@ Assuming topology alone solves everything. Topology mapping is powerful
for troubleshooting — but by itself rarely a “smoking gun” in root cause analysis.

(This is where AlOps shines.)

&9 SENSER

Tips for getting started

® Leverage Kubernetes metadata. Use tools that automatically pull data
from Kubernetes-native sources like pod labels, ConfigMaps, and events to

build accurate, context-rich maps.

& Automate topology maps. Choose solutions that dynamically update the
topology to keep up with Kubernetes’ rapid scaling and frequent state

changes.

@ Avoid context-building pitfalls. Begin with critical applications where
better visibility will have the greatest operational benefit, then expand as

you refine your process.

&9 SENSER

" SENSER

Thank you!

