
1Page

Kubernetes…
Minus the Blind Spots
Solving K8s Observability Challenges with Real-Time Topology

Conf42 DevOps
January 2025

2Page 2Page

Today’s Roadmap

Kubernetes is great (until you have to
troubleshoot)

Challenges with the traditional
observability toolkit

Real-time topology mapping:
what, why, how

Real-world use cases

Getting started

eBPF as real-time topology enabler

3Page 3

Kubernetes is great (until you have to troubleshoot)

"The problem with logs is that they require
more logs, and rarely from a single place"

Blurred line between app and infra issues❗

Ephemeral environments❗

Complex networking (CoreDNS,
kube-proxy, CNI plugins, etc.)

❗

Shared resources and noisy neighbors❗

Black box containers ❗

Automation complexity❗

4Page 4

Challenges with the traditional observability toolkit

Metrics

Track trends but lack system
views and context.

Logs

“Coarse,” provide granular
detail but are fragmented.

Traces

Show service interactions

but need instrumentation.

What’s causing this spike in
CPU usage?

What are the downstream
effects of an error in this

pod?

We’re flying blind on the
services we haven’t

instrumented…

5Page 5

Real-time topology provides the context required to
eliminate blind spots and troubleshoot, fast.

How it works

Continuously updates to reflect real-time
changes (every new service, every
deployment)

Why it matters

Connect individual data points into a
full-system view

What it is

A live map of system relationships (pods,
services, networks)

6Page 6

Real-time topology provides the context required to
eliminate blind spots and troubleshoot, fast.

https://docs.google.com/file/d/1s3UxYwqa3kcSIIgs1FfxjX6pAo11o3sC/preview

7Page

A stateful application in Kubernetes fails readiness
probes due to high disk I/O, leading to pods being
repeatedly restarted by the kubelet. Without proper
visibility, it’s difficult to correlate the high disk usage with
other factors like database queries or backup operations.

Mapping pod dependencies and resource usage,
enabling teams to identify the root cause of the disk I/O
spike and adjust the probe configurations or workload
scheduling.

The scenario

How real-time topology helps

Use case #1: Probe
readiness failure

8Page

Use case #2: Throttling
in autoscaling

An application under high traffic triggers Horizontal Pod
Autoscaling (HPA), but new pods experience throttling
due to CPU limits set too low. This slows down traffic
handling and results in degraded performance.

Visualizing resource allocation and pod scaling behavior,
enabling teams to adjust resource requests and limits to
align with the workload and improve scaling efficiency.

The scenario

How real-time topology helps

9Page

Use case #3: Misconfigured
network policies

A microservice deployed in Kubernetes fails to
communicate with its dependent services due to overly
restrictive Network Policies. The lack of detailed logs or
visibility into blocked connections makes it difficult to
diagnose the issue.

Mapping service-to-service communication paths and
highlighting blocked connections, enabling teams to
update Network Policies and restore communication
between services.

The scenario

How real-time topology helps

10Page 10

What enables real-time topology

+

11Page 11

eBPF (extended Berkeley Packet Filter) is a Linux kernel feature that
allows safe, low-level instrumentation and monitoring.

Traffic analysis: Trace network requests, messages,
and data flows.

Infra, App & Performance monitoring: Observe
system calls, resource usage, and latency in
real-time.

Security auditing: Detect anomalies or
unauthorized access at a granular level.

Why it matters

Enables deep observability
directly from the kernel, making it
invaluable for complex,
distributed environments.

What is eBPF?

12Page 12

Why eBPF is ideal for distributed systems

Low-latency monitoring. Captures and
displays real-time insights without hindering
system performance.

Enhanced visibility. Sees all network
interactions and system calls to provide
comprehensive insights.

Improved efficiency. Reduces need for
multiple diagnostic tools, centralizing
observability with eBPF.

Scalability. Adapts to cloud-native and
microservices architectures, providing a
consistent observability approach.

13Page 13

Auto-discovery and mapping of your environment

AI capabilities that use Kubernetes metadata and traffic inspection to
discover dependencies and create a dynamic service graph – without
requiring manual updates.

14Page

Common pitfalls (and how to avoid them)

Incomplete instrumentation: Missing critical data like kubelet logs, API
server events, or container runtime metrics leaves significant gaps in the
topology, reducing its usefulness. (Technologies like eBPF can help.)

Stale topology maps. Kubernetes environments are constantly changing. If
topology updates aren’t automatic and real-time, you risk basing decisions
on outdated information.

Assuming topology alone solves everything. Topology mapping is powerful
for troubleshooting – but by itself rarely a “smoking gun” in root cause analysis.
(This is where AIOps shines.)

15Page

Tips for getting started

Leverage Kubernetes metadata. Use tools that automatically pull data
from Kubernetes-native sources like pod labels, ConfigMaps, and events to
build accurate, context-rich maps.

Automate topology maps. Choose solutions that dynamically update the
topology to keep up with Kubernetes’ rapid scaling and frequent state
changes.

Avoid context-building pitfalls. Begin with critical applications where
better visibility will have the greatest operational benefit, then expand as
you refine your process.

16Page

Thank you!

