
1Page

Decoding K8s Incidents
How to make logs work for you in real-world troubleshooting

Conf42
Oct 19, 2024

2Page 2Page

Today’s Roadmap

The trouble with logs in isolation

What does “context” look like?

A tale of investigation

Pitfalls

How to get started

3Page 3

You already know Kubernetes logs are helpful for
troubleshooting (but not ideal on their own)

Other issues occurring around the same time

Similar prior incidents

Related components across your topology

Individual logs lack context into:

A human wrote them, if they exist they are based on experience and
assumptions

"The problem with logs is that they require
more logs, and rarely from a single place"

4Page 4

My goal: inspire you with the “art of the possible”
(taken from a real-world K8s example)

One Kubernetes log. Many troubleshooting paths.

Primary metrics impacted:
● MTTR
● Total investigation time
● SRE sanity

5Page 5

First: what do I mean by “context” ?

Topology

High-level view of how the
environment is structured,
showing how different nodes,
services, and infrastructure
components are connected

Metrics

Performance indicators, such as
resource usage (CPU, memory),
network latency, or error rates,
which give insight into the
health of the system

Deployment history

Information on recently
deployments (since newly
deployed versions of services or
applications can introduce
issues)

6Page 6

Why is it hard to get this kind of context?
Two basic strategies – both with serious shortcomings.

Commercial observability tech Open-source observability stack

Sample technology Dynatrace, Datadog, New Relic Open Telemetry, Prometheus,
Grafana

What it involves Deploying observability agents/
modules for system coverage

Manually instrumenting your
production environment

Common challenges ● Cost $$$
○ Or more specifically cost for

coverage
● Configuring and maintaining

dashboards

● Coverage gaps, blind spots
● Instrumentation overhead
● Production impact

7Page 7

(Spoiler alert: eBPF + automated topology can help)

+

More on this later in the talk.

8Page 8

A tale of investigation
The log

9Page 9

A tale of investigation

The actual underlying issue...

Lost database connection

10Page10

Relying on the log alone
What troubleshooting looks like

Getting started: Examine the logs of the node that lost the
database connection.

Process: Scrub through the logs, searching for potential
causes, such as application errors, resource issues, or
networking problems.

Challenge: You would need to investigate each layer
(network, resource allocation, application), working your
way up the stack in a recursive manner.

Outcome: A longer time to troubleshoot because you'd have
to check each potential cause manually, eventually
triangulating that the issue might not lie in the node itself
but in an adjacent node or system.

11Page 11

Log + contextual enrichment

Getting started: With enriched data (e.g., system topology
and metrics), you would get a holistic view of the
environment, allowing you to see how elements interact.

Process: Quickly see whether the issue stems from another
node, a network issue, a resource constraint, or an
application-level error such as losing credentials.

Outcome: The enriched data helps pinpoint the root cause
much faster. You would also use tools like topology to
identify which nodes or services are likely to be impacted by
the issue, leading to faster resolution.

What troubleshooting looks like

12Page 12

Let’s see what this looks like …

13Page

Common pitfalls (and how to avoid them)

Incomplete instrumentation: If environments are only partially
instrumented, you might have blind spots that make it hard to investigate
issues. (Technologies like eBPF can help.)

Reliance on tribal knowledge. Consider a system that codifies deployment
history and automates root cause analysis based on previous system
issues.

Incorrect heuristics. Without system-wide context, troubleshooting often
focuses on the node or service where the issue was observed – don’t overlook
the possibility that the root cause is in a neighboring node or service.

14Page

Tips for getting started

Use topology, metrics, and deployments. Your system architecture,
metrics (e.g., CPU, memory, network performance), and deployment history
are the keys to efficiently enriching logs with context.

Adopt a layered approach: Start with high-level insights (topology,
performance metrics) and then drill down into specific logs or components
based on the clues provided by these higher-level views.

Avoid context-building pitfalls. Consider eBPF for complete coverage –
and services that automate your topology – to avoid manual
instrumentation. AIOps can also help with automated root cause analysis.

15Page

Thank you!

