
1Page

Bridging the Gap
Real-Time Topology as the Connective Tissue Between
Platform Engineering and SRE

Conf42
September 5, 2024

2Page 2Page

Today’s Roadmap

What’s missing from your IDP?

Lessons from cybersecurity

Real-time topology as a shared language

What you can do with a closed loop

How to get started

3Page 3

IDPs are incredible for bridging dev and DevOps …

4Page 4

…but on their own, they’re missing some critical
context .

Run-time environment:

● Resources
● APIs
● Third-party

exposure/dependencies
● Runtime config (and

misconfig)

5Page 5

We’re not the only domain facing this challenge.
Cybersecurity sectors – like application security – also had bridge the gap between static analysis
and runtime to make “shift left” a reality.

The static “catalog”

Vulnerabilities
OSS components
Authentication and encryption
frameworks
Secrets

The runtime environment

Deployed?
Internet-exposed?
Behind a WAF?
Runtime misconfigurations?

● Get an accurate view of the
actual attack surface

● Focus on real risks, not just
vulnerabilities

● Embed policies and guardrails
earlier on in the SDLC

6Page 6

For platform engineering, this runtime context
comes from real-time topology .

Benefits

Full, closed-loop visibility

More efficient troubleshooting

Less IDP maintenance required

Why it’s hard

Runtime dynamics are much more
complex than static dynamics

7Page 7

Topology enriches the IDP with runtime context on
multiple levels .

Overall system level
Runtime view of your production environment across all applications, infrastructure, networks, and APIs

https://docs.google.com/file/d/1qk7DduUqdQi3Yj-ft_5k7mbOhLKCCZAl/preview

8Page 8

Topology enriches the IDP with runtime context on
multiple levels .

Specific services
Deployment status, runtime configuration, and performance of specific services

https://docs.google.com/file/d/1JFidsksqYt5FGwMYZLKJFocf3REqFvjD/preview

9Page 9

Topology enriches the IDP with runtime context on
multiple levels .

3rd party resources
Availability, latency, status of third-party resources (e.g., public APIs, payment gateways)

https://docs.google.com/file/d/1s3UxYwqa3kcSIIgs1FfxjX6pAo11o3sC/preview

10Page 10

Okay, so at a high level…

Real-time topology:

Let’s look at three real-world use cases.

Enriches the services catalog of an IDP with an accurate, dynamic
representation of the runtime environment (and all associated
configurations and dependencies)

Provides a common language for platform engineering and SRE by
“closing the loop”

Furnishes crucial context for better decision-making throughout the SDLC

11Page

Anticipating reliability
impact

Topology can enrich tribal knowledge of past
deployments with runtime incidents, affected
services, and downstream SLO/SLA impact (i.e.,
what does this service really “cost” to spin up)?

Real-world example: a service deployed for
high-volume transactions during peak hours
often leads to incidents related to memory
overload, impacting downstream services
like the customer account dashboard and
transaction confirmation services

Benefits: stronger guardrails, a data-driven
checklist for new deployments

12Page

Verifying deployments
in real-time

IDPs offer developer guardrails around (e.g., limits
on memory usage, CPU, latency, bandwidth) to
ensure efficient and reliable deployments

BUT these are typically set during the
development phase

Real-world example: when a new service
begins consuming excessive CPU, the
real-time topology can immediately flag this
deviation

Topology can provide real-time monitoring of
performance to flag deviations, accelerate
remediation, and define better guardrails

13Page

Investigating and
responding to issues

IDPs typically support the notion of incidents, and
integrate with observability and incident
management platforms

The service catalog can be a valuable asset
for root cause analysis – but it only extends
through provisioning and orchestration

Real-world example: a team needs to
identify whether service degradation in a
new deployment is related to issues with a
third-party resource

Topology enriches this view with runtime
context for full visibility

14Page

Common pitfalls (and how to avoid them)

Maintenance debt. Engineering a closed loop between the service catalog
and runtime is the first step – don’t overlook the resourcing to keep it
properly maintained, audited, and serviced.

Incomplete runtime context. You need full context on your production
environment – all resources, APIs, third-party services. (Technologies like
eBPF can help.)

Static snapshots. To be useful, runtime topology needs to be continuously,
automatically discovered and updated.

15Page

Tips for getting started

Build your topology. Observability tools can help, but often require
extensive configuration. Some platforms offer auto-discovery and mapping
of your environment, often with the help of technology like eBPF.

Integrate your topology with your IDP. IDPs offer integration with
observability and incident response platforms.

Scale and expand. Build on early wins with additional opportunities to
weave runtime context into your IDP and throughout the SDLC.

Prioritize use cases. Identify “quick wins” based on your organization’s
challenges and needs (e.g., verifying deployments in real-time).

16Page

Thank you!

