
Cloud-Native ML 
Infrastructure: Building 
Resilient Apache Spark 
Clusters on Kubernetes for 
AI/ML Workloads
The convergence of AI/ML workloads with cloud-native infrastructure 

presents unique challenges in scalability, resource utilization, and 

operational complexity. This presentation explores building production-

grade Apache Spark clusters on Kubernetes to address these challenges for 

AI/ML workloads.

by Anant Kumar



Evolution of ML Infrastructure: From On-Premise to 
Cloud-Native

On-Premise

Historically, ML infrastructure was primarily on-premise, 

requiring significant upfront investment and ongoing 

maintenance.

Cloud-Native

The shift to cloud-native infrastructure allows for greater 

scalability, flexibility, and cost efficiency.



Common Challenges in ML 
Infrastructure

Scalability

Meeting the demands of 

large-scale ML models and 

datasets.

Resource Utilization

Optimizing resource 

allocation for efficient 

training and inference.

Operational Complexity

Managing and maintaining complex infrastructure and applications.



Why Apache Spark for ML 
Workloads

Distributed Processing

Processing large datasets 

across a cluster of machines.

In-Memory Computing

Fast data processing through 

in-memory storage.

Machine Learning Libraries

Pre-built libraries for common ML tasks.



Introduction to Kubernetes 
and Its Role in ML 
Infrastructure

Container 

orchestration for 

managing and 

deploying Spark 

applications.

Resource management 

for efficient resource 

allocation and 

utilization.

Auto-scaling for 

dynamic scaling of 

Spark clusters based 

on workload demands.



Key Components of Cloud-Native ML Architecture

1 2

34

Data Storage

Data lakes, object storage, and databases.

Compute Resources

Kubernetes clusters, virtual machines, and 

GPUs.

ML Frameworks

Apache Spark, TensorFlow, PyTorch.

Model Serving

Platforms for deploying and serving trained 

models.



Understanding Spark on 
Kubernetes Architecture

1 Spark applications are deployed as Kubernetes pods.

2 Spark workers communicate with each other and the 

master node.

3 Data is stored and accessed through persistent volumes.



Resource Management in Kubernetes for Spark 
Workloads

1

Resource Requests and Limits

Defining the resources each Spark pod 

requires.

2

Resource Quotas

Setting limits on resource 

consumption for namespaces.

3

Node Affinity and Taints

Assigning pods to specific nodes 

based on their needs.



Configuring Spark Operator 
on Kubernetes

Installation

Installing the Spark Operator on the Kubernetes cluster.

Configuration

Configuring the Spark Operator with cluster settings and resource 

limits.

Deployment

Deploying Spark applications using the Spark Operator.



Setting Up Dynamic Resource Allocation

1

2

3

Resource Monitoring

Monitoring Spark resource 

consumption in real-time.

Dynamic Scaling

Adjusting resources based on 

workload demands.

Resource Optimization

Ensuring efficient utilization of 

resources.



Implementing Auto-scaling for Spark Clusters

2
Horizontal Scaling

Adding or removing Spark nodes based on workload.

3
Vertical Scaling

Adjusting resources within existing nodes.



Managing Storage Options for ML Data



Handling Data Persistence and State Management

1
Persistent Volumes

Storing data beyond pod lifecycle.

2
Stateful Sets

Managing stateful applications with persistent data.

3
Data Replication

Ensuring data availability and redundancy.



Monitoring and Observability 
Setup

Monitoring tools like Prometheus and Grafana.

Logging solutions like Fluentd and Elasticsearch.

Tracing systems like Jaeger and Zipkin.



Performance Optimization Techniques

1
Data Partitioning

Optimizing data distribution across workers.

2
Data Caching

Caching frequently accessed data in memory.

3
Code Optimization

Improving Spark application efficiency.



Security Best Practices for Spark on Kubernetes

Network Policies Data Encryption Authentication and
Authoriz...

Vulnerability Scanning



Authentication and Authorization Mechanisms

RBAC

Controlling access to resources based on 

user roles.

OAuth

Using external identity providers for 

authentication.

Certificate-Based 
Authentication

Using digital certificates for secure 

communication.



Network Policies and Data Protection

Network Segmentation

Isolating Spark workloads from other applications.

Data Encryption

Encrypting sensitive data at rest and in transit.



Cost Optimization Strategies

1 Spot Instances

Utilizing cheaper, temporary 

compute resources.

2 Resource Optimization

Fine-tuning resource 

allocation to reduce waste.

3 Idle Resource Management

Scaling down or terminating resources when not in use.



High Availability Configuration

1Multiple master nodes for redundancy.

2 Redundant Spark workers for fault tolerance.

3Data replication across multiple nodes.



Disaster Recovery Planning

1
Data backup and recovery procedures.

2
Replication of data across multiple regions.

3
Failover mechanisms to restore operations.



CI/CD Pipeline for Spark 
Applications

Build

Building and packaging Spark applications.

Test

Running automated tests for code quality and functionality.

Deploy

Deploying Spark applications to the Kubernetes cluster.

Monitor

Monitoring the performance and health of applications.



Integration with ML Model Serving Platforms

Deploying trained models from Spark to serving platforms. Serving models for real-time inference and predictions.



Managing Dependencies and 
Libraries

1
Dependency Management

Using tools like Maven to manage project dependencies.

2
Containerization

Packaging applications and their dependencies in Docker containers.



Debugging and 
Troubleshooting Techniques

Logs Analysis

Analyzing Spark and 

Kubernetes logs for errors.

Debugging Tools

Using debugging tools to 

inspect code and variables.

Kubernetes Monitoring

Leveraging Kubernetes monitoring tools to identify issues.



Performance Benchmarking 
and Testing

1 Measuring performance metrics under different workloads.

2 Identifying bottlenecks and areas for improvement.

3 Validating performance after optimization techniques.



Real-world Case Study: Large-scale ML Pipeline

Challenge

Building a pipeline for processing terabytes of data.

Solution

Leveraging Spark on Kubernetes for distributed processing 

and scalability.



Lessons Learned and Best Practices

Start Small

Start with a small cluster and 

gradually scale up.

Automate

Automate deployment, scaling, and 

monitoring processes.

Optimize

Continuously optimize resource 

utilization and performance.



Future Trends in Cloud-
Native ML Infrastructure

1
Serverless computing for ML workloads.

2
Edge computing for real-time AI applications.

3
AI-powered infrastructure management.



Q&A and Additional Resources
This presentation provides a foundation for building resilient and scalable Apache Spark clusters on Kubernetes for AI workloads. 

We encourage you to explore additional resources and continue learning about this dynamic field.


