
Modern Database Architectures: From SQL to
NoSQL and Distributed SQL
Andrei Manakov

■ 10+ years of experience in distributed
systems development

■ Currently building ML infrastructure at
indian tik-tok like app (300M MAU)

■ I write posts about distributed systems
in my personal blog

About me

📚 Types of Databases:

1. Hierarchical DBs (e.g., IBM IMS)
2. Network DBs (e.g., CODASYL, IDMS)
3. File Systems

❌ Key issues:

● 📍 Complex data access that required navigating step-by-step through the structure.

● 🔧 Applications tightly depended on data structure.

● 🔄 Even small changes required rewriting code.

● 🧩 No universal query language: developers had to write low-level code.

● ♻ Data redundancy and inconsistency: the same data was stored in multiple places.

● 🧱 No built-in integrity constraints (e.g., uniqueness or relationships).

● 🚫 Lack of logical and physical data independence.

Prehistoric databases (1950–1960s)

🧠 What did Codd do?

● In 1970, Edgar F. Codd introduced the relational data model, revolutionizing the way data was stored and processed. .
● For the first time, he applied mathematical principles to databases:

a. Set theory
b. First-order predicate logic

● He also formulated the famous 12 rules, solving all previous database issues:
a. 📍 Complex data access — ✅
b. 🔧 Tight application dependency on data structure — ✅
c. 🔄 Modification challenges — ✅
d. 🧩 No universal query language — ✅
e. ♻ Data redundancy and inconsistency — ✅
f. 🧱 No built-in integrity constraints — ✅

g. 🚫 Lack of logical and physical data independence — ✅

Edgar F. Codd’s breakthrough (1970)

✅ Proven and tested storage structure

✅ Clear formal foundation (set theory + logic)

✅ Standardized query language (SQL)

✅ Transaction support (ACID):

A — Atomicity

C — Consistency

I — Isolation

D — Durability

✅ Data reliability and consistency

✅ Data normalization

Examples: Oracle and FoxPro

The era of relational DBs (1970–1980s)

🌍 The Internet Boom of the 1990s

● Mass Internet access transformed how businesses operated.
● Companies rapidly developed web applications, e-commerce platforms, and online services.
● The number of users and data requests skyrocketed — growing by tens or even hundreds of times.

💾 Impact on databases:

● 📈 Explosive data growth:
○ User profiles, logs, actions, transactions.

● 🔁 Demand for real-time processing:
○ Instant responses became crucial.

● 🧩 More complex data structures:
○ Databases had to store everything from products and orders to images and user behavior.

⚠ Consequences:

➡ Relational databases struggled with scaling issues.

➡ New database architectures were needed to meet rising demands.

Challenges of the 1990s

✅ Simple

✅ No issues with consistency, transactions, or joins

❌ Hard scalability limits

Solution: vertical scaling

✅ Still simple

✅ Increased overall storage capacity

❌ Still has a limit

Solution: logical database partitioning

📌 Denormalization

📌 No transactions

✅ Increased overall system capacity

❌ Still a ceiling

❌ Requires careful planning

Solution: sacrificing Codd’s model

✅ Lower database load

❌ Sometimes users end up reading outdated data from the cache

❌ Still a ceiling

Solution: caching

P (Partition Tolerance) — the system continues to function even if some nodes become unavailable.

C (Consistency) — all nodes see the same data at the same time.

A (Availability) — every request receives a response.

Classical database – CA

CAP theorem

📌 Also considers the trade-off between performance and
consistency

PACELC

1. Always, if there is not a high load (around 1K RPS)

✅ Scaling is not required

✅ All the benefits of Codd’s model remain

✅ No trade-offs

📌 Must account for potential failures

2. If you’re ready to invest significant effort in database configuration

When to choose relational databases?

📌 AP — sacrificing C*

✅ No limits on read scalability!

❌ There’s a ceiling on write scalability

Replication

📌 CP — sacrificing A*

✅ Can scale both reads and writes

❌ No transactions

❌ Everything becomes much more complex!

Sharding

✅ Designed for scalability and big data

📌 Built-in support for sharding and replication

✅ Prefer flexible schemas (or no schema at all)

❌ Do not necessarily use tables and SQL

❌ Do not support transactions*

📦 Examples:

🔹 Key-Value: Redis and DynamoDB

📄 Document-based: MongoDB

🧠 Graph-based: Neo4j

🔢 Columnar: Cassandra и ScyllaDB

NoSQL (2000s)

Distributed transactions require multiple nodes (or databases) to perform a series of operations in a coordinated manner — either all
together or none at all. This is achieved through coordination protocols that ensure:

● 📦 Atomicity

● 🔁 Consistency

● 🧷 Fault tolerance

● 🔐 Isolation

⚠ Key issues:

● 🕒 Poor performance
 — Waiting for responses from all nodes.
 — Slow consensus, even with one slow participant.
 — Resource locks until Phase 2 is complete.

● 🔌 Vulnerability during failures
 — If the coordinator fails at a critical moment, a freeze may occur.

● 🧩 Implementation complexity
 — Manual handling of timeouts, failures, and retries is required.

Distributed transactions

📌CP, often sacrificing A

✅ Maintain ACID (transactions, consistency)
✅ Use SQL — a familiar and tested language

✅ Scale horizontally, like NoSQL databases

❌ Sharding needs to be considered during design

❌ Joins and transactions can be very slow across different shards

📌 Examples of distributed SQL databases:

● Open source: CockroachDB, YugabyteDB

● Cloud-based: Google Spanner, AWS Aurora

Distributed SQL (2010s)

📌 In-memory key-value database

📌 Highly customisable

✅ Consistency

❌ Availability

✅ Partition tolerance

✅ Scalability

Example — distributed locking

CAP theorem with Redis example

❌ Consistency

✅ Availability

✅ Partition tolerance

✅ Scalability

Example — distributed caching

CAP theorem with Redis example

✅ Consistency

✅ Availability

❌ Partition tolerance

❌ Scalability

CAP theorem with Redis example

📚 Academically, many consistency models
are distinguished, each with different
guarantees

More on consistency in distributed systems

✅ Strong Consistency

● All clients immediately see the same data after a write operation.

🔁 Eventual Consistency

● After a write, all nodes will eventually contain the same data, but it might not be immediately consistent.

🛠Tunable Consistency

● The level of consistency can be configured at the query level.

Consistency in practice

✅ Tunable consistency — consistency is regulated at the query
level

✅ No single point of failure.

RP (Replication level) — the number of copies

in which data is stored.

ScyllaDB

With network partitioning:

 ✅ Consistency

 ❌ Availability

Without network partitioning:

 ✅ Consistency

 ❌ Performance

Example: critical financial transactions

CAP theorem with ScyllaDB example

With network partitioning:

 ❌ Consistency

 ✅ Availability

Without

network partitioning:

 ❌ Consistency

 ✅ Performance

Examples: news feed

CAP theorem with ScyllaDB example

🛠 Consistency

🛠 Availability

🛠 Performance

CAP theorem with ScyllaDB example

🌳 B-tree

● Widely used in both relational database
management systems (RDBMS) and NoSQL
databases.

📌 Key properties:

● Optimized for reading -> minimizes the number of
disk reads.

● Not optimized for heavy write operations.

Database engine: LST tree and B-tree

🧱 LSM-Tree (Log-Structured
Merge-Tree)

● An LSM-tree is a structure optimized for
high write input.

● All changes are first recorded in memory
(MemTable).

● Data is periodically written to disk.

Used in:

● NoSQL DBs: Cassandra, RocksDB,
LevelDB, ScyllaDB

Database engine: LST tree and B-tree

🚀 Companies are rewriting systems while keeping the API intact

🟠 ScyllaDB

● A fully rewritten alternative to Cassandra in C++.

● 5–10 times faster than Cassandra with the same API, thanks to the one thread per core architecture.

🟣 Redpanda

● A rewritten version of Kafka, but without JVM, in C++.

● 10 times faster thanks to the one thread per core architecture.

🟡 Dragonfly

● A high-performance alternative to Redis.
● 5–25 times faster than Redis thanks to the one thread per core architecture.

Modern trends

📌 One thread per core.

📌 Each core is assigned
its own chunk of data.

✅ No thread contention —
faster data processing.

✅ Better resource
utilisation without
performance degradation.

Why faster?

 Blog - https://andection.substack.com/

 Twitter - @AndreyManakov

 BlueSky - https://andection.bsky.social/

 Email - andection@gmail.com

Contacts

https://andection.substack.com/
https://x.com/AndreyManakov
https://andection.bsky.social/
mailto:andection@gmail.com

