
1

Fast Confidence Estimation for Classification and Regression
models

Andrei Stroganov, Andrei Visochan

Samsung Research

2

1. The prediction confidence

Why do we need it? How to define it?

3

The problem

Prediction quality estimation plays key role in model tuning and there are many
metrics (F1, ROC/PR AUC, etc) to do such estimation. During tuning we usually
have testing dataset, so the true values are known and we can compare the predicted
values with them.

There are scenarios when ML model is applied on a group basis, for instance: detect
the infected persons within a group. In this case we might be interested not only how
well the model performs on individual samples, but also — on the entire groups. But
what if we don’t have the true values for validating the predictions? Can we tell if
group predicted ”probably ok“ or predictions seems improbable?

As a motivating example for this problem we’ll consider ML method for Profile Guided
Optimization (PGO) that we proposed in [1].

[1] A. Visochan, A. Stroganov, I. Titarenko, S. Lonchakov, S. Mologin, S. Pavlova, A. Lyupa, A.
Kozlova, “Method for Profile-Guided Optimization of Android Applications Using Random Forest,” in
IEEE Access, vol. 10, pp. 109652-109662, 2022, doi: 10.1109/ACCESS.2022.3214971.

4

A motivating example

The Android applications consist of Java bytecode of classes and methods, which can
be compiled into native representation usually resulting in faster application startup
and smoother performance. In PGO not all classes and methods are compiled, but
only those which are frequently used (hot), their indexes are listed in a special file — a
profile.

In ML approach [1], a model predicts hot items and creates an optimization profile on
a per-application basis. There are cases when testing profile is unavailable, so direct
prediction validation is impossible. In this talk we’ll discuss a p-value based method to
indirectly estimate the prediction confidence in similar cases.

5

To which predictions do we trust?

How many hot methods in given application?

Application Number of
methods

Predicted hot

Solitaire 295019 7905
Downlood 76791 8433
Sofascore 166963 16151
Connect 383885 15813
Fontboard 68180 2083

Our goals:
▶ Provide a metric which evaluates a confidence level as real number between 0 and

1, where 1 is most probable result, 0 is most improbable;
▶ Metric evaluation should be time-efficient;
▶ Implementation should be easily verified (for stability and undefined behavior

safety).

6

Examine the real data distribution

Total Hot Ratio
Hot/Total

1 277512 11604 0.042
2 136652 3886 0.028
3 161363 6255 0.039
4 375659 16023 0.043
5 300533 7316 0.021
6 330094 12063 0.037
7 202537 17172 0.085
8 521079 25066 0.048
9 104607 9613 0.092
10 94947 2890 0.030
...

7

2. Defining a metric

8

Recall: a probability distribution function

Probability Distribution Function (PDF) f (x) describes how probabilities are
assigned to the possible outcomes of a random variable.

Cumulative Distribution Function (CDF) F (x) gives the probability that the random
variable is less than or equal to a certain value:

F (x) = P(X ≤ x)

▶ F (x) is non-decreasing: if a < b then
F (a) ≤ F (b).

▶ F (x) is bounded: 0 ≤ F (x) ≤ 1.
▶ F (x) is defined as integral of f (x):

F (x) =

∫ x

−∞
f (t)dt

9

PDF approximation

From the data distribution we get mean
and standard deviation values:
µ ≈ 0.043, σ ≈ 0.026.

f (x) =
1

σ
√
2π

e
− 1

2

(
x−µ
σ

)2

A spline approximation of experimental
data

10

A confidence measure

We will use a p-value based approach [2].

Let t be a value for which we measure confidence, f (x) is a PDF and F (x) is a CDF.

▶ F (t) = P(x ≤ t) is a probability that a randomly picked f -distributed value is less
or equal than t.

▶ 1− F (t) = P(x > t) is a probability that a randomly picked f -distributed value is
greater than t.

If F (t) and 1− F (t) differs significantly, then t is shifted from the most of the values,
such value is unlikely to occur. Thus we define confidence metric φ(t) as:

φ(t) = 2 ·min (F (t) , 1− F (t))

Note that φ(t) = 1 when there are equal chances of randomly picked value to be
greater than t or less than t.

[2] 2004, Lavine, M., Introduction to Statistical Thought, free internet publication

11

So, how confident we are about predictions?

App Number of
methods

Prediction Confidence

Solitaire 295019 7905 0.53
Downlood 76791 8433 0.01
Sofascore 166963 16151 0.04
Connect 383885 15813 0.94
Fontboard 68180 2083 0.63

12

3. Approaching the computation of φ(x)

13

Computing of φ(x): a plan

Recall the goals
▶ Create a metric which evaluates a confidence level as real number between 0 and

1, where 1 is most probable result, 0 is most improbable;
Done:

φ(t) = 2 ·min (F (t) , 1− F (t))

Note: Usually this requires integration.
▶ Metric evaluation should be time-efficient;
▶ Implementation should be easily verified (for stability and undefined behavior

safety).

14

Computing of φ(x): time-efficient
To compute F (x) we will use a numerical integration on evenly distributed grid with
step size ∆. The integration range is defined by PDF, let it be [a, b], thus we consider
f (x) to be negligibly small for x < a or x > b.

Prepare a lookup table. Let’s store the values of the integral∫ x

a
f (t)dt

at points a, a+∆, a+ 2∆, . . . , b in table cdf:

cdf [i] =

∫ a+i·∆

a
f (t)dt

for i = 0, . . . , n, where a+∆ · n = b. Note that cdf [0] = 0 and cdf [n] ≈ 1.

Query in runtime in O(1).

float phi(float x) {
if x <= a or x >= b: return 0

i = int((x - a) / Delta)
return 2 * min(cdf[i], 1 - cdf[i])

}

Here we provide a simplified pseudo-code. Our C++ implementation is more general,
it is available at: https://github.com/savthe/prediction-confidence.

https://github.com/savthe/prediction-confidence

15

Computing of φ(x): Implementation should be easily verified

There are several approaches to generating a lookup table with its pros and cons:
▶ Generate a table when app starts;

Pros: fairly simple.
Cons: increases start time, additional runtime code and unit-testing.

▶ Generate table before app starts and initialize it with every single value;
Pros: fairly simple, lesser unit-testing.
Cons: may be difficult for support if we decide to change µ and σ.

▶ Generate table before app starts using C++ feature Generic Programming.
Pros: table is generated at compile time. The runtime code is very simple, µ and
σ can be changed without modifying runtime code. We can test values at compile
time, so lesser unit-testing required
Cons: code is more complex than runtime solution.

We will implement table generation with generic programming.

16

4. The implementation

17

Computing the integral
We will use the trapezoid rule[3] for approximating the integral∫ b

a
f (x)dx

we define the grid of size ∆ with points x1 = a, a+∆, . . . , b = xn. The area between
each consequent points xi , xi+1 = xi +∆ is approximated by trapezoid.

si = (f (xi) + f (xi+1)) ·
∆

2∫ b

a
f (x)dx ≈ ∆ ·

(
f (x1) + f (xn)

2
+

n−1∑
i=2

f (xi)

)
(1)

[3] https://en.wikipedia.org/wiki/Trapezoidal_rule

https://en.wikipedia.org/wiki/Trapezoidal_rule

18

Computing the integral: a lookup table

Denote xi = a+∆ · i , and let

cdf [i] ≈
∫ xi

a
f (t)dt ≈ ∆ ·

(
f (a) + f (xi)

2
+

i−1∑
k=2

f (xk)

)

The table is filled with each f (xk) computed only once:

cdf[0] = 0;
sum = f(a) / 2
for i in [1, n]:

f_i = f(a + i * Delta)
cdf[i] = Delta * (sum + f_i / 2)
sum = sum + f_i

19

Computing the PDF for Normal distribution
The probability distribution function f (x) is given by:

f (x) =
1

σ
√
2π

e
− 1

2

(
x−µ
σ

)2

(2)

The constant part is easy to compute
(√

2π ≈ 2.50662827463
)
, but standard exp(x)

function is not available at compile time (it is not a constexpr function in C++17).
So, we make one ourselves! Recall the Taylor expansion of ex :

ex = 1 + x +
x2

2!
+ . . .+

xn

n!
+ . . . (3)

The straightforward implementation would be:

accuracy = 0.000001
e = 0
term = 1
i = 1
while term > accuracy:

e = e + term
term = term * x / i
i = i + 1

return e

But there is a problem: term xn/n! can become quite large before factorial scales it
down to zero, this leading to overflow. We’ll use this code for |x | < 1.

20

Computing ex for |x | ≥ 1

Let x = u + v , where u is an integer part of x , and v is a fractional part of x , and

ex = eu+v = eu · ev . (4)

We already have implementation for ev . For eu we will use binpow[4] algorithm.
Suppose u ≥ 0, if not, we will apply algorithm to 1/e ≈ 0.36787944117.

x = 2.718281828459045 // This is exp(1)
p = 1
while u > 0:

// if u is odd
if u % 2 == 1:

p = p * x

x = x * x
u = u / 2

return p

Combination of two provided methods allows to efficiently compute exp(x) in compile
time.

[4] https://cp-algorithms.com/algebra/binary-exp.html

https://cp-algorithms.com/algebra/binary-exp.html

21

Conclusion

▶ We discussed a confidence estimation approach for classification and regression
models based on p-value score.

▶ Provided an implementation of time complexity O(1)
(https://github.com/savthe/prediction-confidence).

▶ The approach is general and can be applied to various data distributions,
including the approximations of experimental data.

https://github.com/savthe/prediction-confidence

22

Thank you for your attention

