
1

Tree Ensemble Classifiers on heterogeneous platforms:
Performance & Scalability Challenges

Andrei Stroganov
savthe@gmail.com

savthe@gmail.com


2

Heterogeneous CPUs

Heterogeneous CPUs, particularly those utilizing big.LITTLE architecture
combines high-performance cores (big) with energy-efficient cores (little) within
a single processor. Initially designed for mobile devices, where power efficiency
is crucial, heterogeneous CPUs are now gradually making their way into the
server segment.

▶ Dynamically allocate workloads to the appropriate cores
▶ Applications can range from lightweight microservices to resource-intensive

data processing tasks
▶ Attractive option for data centers striving to lower operational costs and

minimize their environmental impact.



3

Quick recap. A decision tree

Random forest model is collections of decision trees, where each tree is trained
on a random subset of a training dataset.

Gradient boosting model is a sequence of small decision trees, where each tree
aims to compensate prediction inaccuracy of previous trees.



4

Tree ensemble models

Tree ensemble classifiers are a powerful class of machine learning algorithms
that combine the predictions of multiple decision trees to improve accuracy and
robustness.

Random forest and Gradient boosting are two of the most popular tree
ensemble methods, including implementations like ONNX, XGBoost and
LightGBM. These algorithms are widely used across various domains, including
finance, healthcare, and marketing, due to their ability to handle large datasets,
manage high-dimensional feature spaces, and provide interpretable results.

Due to branching nature of both algorithms, they are usually executed on
CPUs, where as we will see, the heterogenity should be considered during
implementation or porting.



5

Experiment settings

▶ Dataset. Weather forecasting dataset with 21 numerical features.
▶ CPU. Octa-core:

2.84 GHz Cortex-A77 (1 core)
2.42 GHz Cortex-A77 (3 cores)
1.80 GHz Cortex-A55 (4 cores)

▶ ONNX. Runtime version: 1.20.1, graph optimization level: Full
▶ Random forest. 100 trees, max depth: 20.
▶ Gradient boosting. 100 trees, max depth: 3.



6

Random forest stock performance

Best performance achieved with 6 threads, 3.3x. Full concurrency penalty.



7

Gradient boosting stock performance

Best performance achieved with 2 threads, 1.2x. Full concurrency penalty.



8

How to parallelize Random Forest?

Each tree is processed in a
dedicated thread

Dataset is split into batches. Each
batch is processed by decision forest
in dedicated thread



9

Parallel task processing

Let’s give 4 equally demanding tasks to 4 cores with different performance.



10

Worker pool



11

Worker pool random forest performance

Best performance achieved with 6, 7, 8 threads, 4.8x. No concurrency penalty.



12

Worker pool gradient boosting performance

Best performance achieved with 8 threads, 4x. No concurrency penalty.



13

Batch size

Batch size of approximately 400 — 800 samples provides best performance in
worker pool approach.



14

Conclusion

▶ Porting software to heterogeneous CPUs may require some architectural
changes to fully utilize computing potential.

▶ Demonstrated that stock multithreading architecture may inefficiently
utilize heterogeneous CPU and discussed reasons for this.

▶ Demonstrated how to solve this problem using worker pool pattern.
▶ Worker pool solution gives 4.8x and 4x performance boost for Random

forest and Gradient boosting respectively, while stock performance boost is
3.3x and 1.2x.


