

The Role of IoT and 5G Devices in DDoS Attacks: A Growing Threat Landscape

DDoS Protection Solution

150+ 110 Tbps

PoPs worldwide

Protection capability

Maximum attack mitigated

>100

Attacks per day

Worldwide coverage

Gcore data centers protected

50

DDoS attack trends

DDoS Attacks

- Overwhelm servers and infrastructure with massive traffic
- Impact: Loss of revenue, reputation and customers

Surge in 5G and IoT Devices

- Increases the arsenal for cybercriminals
- Expands attack capabilities
- IoT devices in botnets: From 200,000 to 1 million in a year
- Steep rise in botnet-driven DDoS attacks

Future Outlook

- Expect more powerful and frequent DDoS attacks
- Increasing number of vulnerable devices prone to botnet recruitment

Attack volume, GBPS

The danger of 5G and IoT

IoT Devices: Pros and Cons

- Benefits: Convenience and automation
- Risks: Low security, easily hackable

IoT as Botnet Recruits

- Smart devices can be weaponized
- Strong passwords essential

5G's Cybersecurity Impact

- Increases network bandwidth
- Amplifies attack potency

The danger of 5G and IoT

Anatomy of IoT-Driven botnet DDoS Attacks

Algorithm of IoT-Driven botnet DDoS Attacks

1. The attacker targets the botnet to a victim

The botnet operator identifies the target—usually a device, website, or online service—that they want to take down.

2. The C&C server orchestrates the DDoS attack

The C&C server sends the attacker's instructions to all the bots in the network to start sending requests to the target. It also coordinates the botnet's behavior.

3. A flood of traffic occurs

All the bots in the network start sending a large number of requests to the target website or server.

Stages of infecting IoT devices

Stages of infecting IoT devices

Here are the stages of infecting IoT devices and connecting them to a botnet based the <u>Mirai</u> case:

1. Initial command: The attacker uses the C&C server to send a command to the botnet for attacking and incorporating new devices.

2. Orchestration: The C&C server coordinates the botnet's actions.

3. Scanning and compromise: The botnet scans and compromises victim devices to gain privileged access by brute-forcing weak passwords or exploiting outdated firmware or insecure configurations.

4. Data reporting: The botnet relays the victim's IP address and access credentials to the loader server once the device is hacked.

5. Malware delivery and infection: The loader server sends malware or malicious instructions, which are then executed by a compromised device, turning it into a bot.

6. Joining the botnet: The newly infected device becomes part of the botnet and awaits further commands, often operating undetected.

IoT Attacks on the Rise

IoT-driven DDoS attacks increased by

300%

in the first half of 2023, causing \$2.5 billion financial loss. 90%

of complex, multi-vector DDoS attacks are based on botnets. Number of IoT devices engaged in botnet-driven DDoS attacks rose from 200,000 a year ago to

1M

devices.

Threats of losses when DDoS attacks happen

DDoS attacks can harm any company, from small businesses to global giants. Without protection, anyone may experience the disastrous consequences of an attack, including:

Loss of profit

It is easy to calculate the losses from a DDoS attack: they total your income per hour. Imagine that your online store earns \$50,000 per hour. That means that every hour of inaccessibility owing to DDoS attack will cost you \$50,000.

Loss of clients

In competitive industries, your customers might go to your competitors who have taken care to protect their business from cybercriminals.

Loss due to compensation

For example, if your project is a SaaS, be prepared to compensate your customers if your service is unavailable.

Loss of customers' data

Often, a DDoS attack is one part of a larger attack designed to steal users' personal data.

Theft of intellectual property

For example, if a server is attacked, all information about an upcoming release could be published too early.

Destruction of valuable resources

Hackers might attack the server and disrupt the infrastructure.

Negative impact on the brand

Customer dissatisfaction in our digital world spreads in minutes and impacts negatively on company's reputation.

Loss of loyalty

The internet has empowered users to leave negative reviews on the web, and those reviews will take away potential new customers.

Protection Measures: Best Practices

1. Protect your IoT from being infected:

- Change default passwords
- Regularly update firmware
- Implement strong authentication
- Consider IoT security frameworks

2. Protect against IoT-driven botnets with specialized DDoS Protection solutions

Example of IoT Botnet Attack from GCORE

Client DDoS Attack: Case Study

- Highly Distributed: Involved numerous devices
- Attack Method: "Carpet Bombing" with UDP traffic

Challenges

- Multiple client addresses targeted
- Uplinks overloaded due to cumulative traffic

Our Response

CORE

- Quick defense system activation
- Identified common attack pattern
- Successfully blocked the attack

Post-Investigation Findings

- Attacker: Botnet exploiting health check kiosks
- Constructed botnet network based on these kiosks

	De	stinat	ion			Pro	tocol	Length	Info)												
	-					IPV	14	1494	Fra	gment	ted I	IP p	rotoc	01 ()	proto:	UDP	17,	off=0,	ID=8	aad)	-	
						IPv	/4	1510	Fra	igment	ted 1	IP p	rotoc	ol (proto=	=UDP	17,	off=0,	ID=d	18d)		
						IPV	14	1494	Fra	igment	ted I	IP p	rotoc	01 (1	proto=	=UDP	17,	off=0,	ID=a	594)		
						IPV	14	1518	Fra	igment	ted I	IP p	rotoc	01 ()	proto:	=UDP	17,	off=0,	ID=a	9fb)		
						IPV	14	1518	Fra	igment	L D91	LP p	rotoco		proto	=UDP	17,	off=0,	ID=a	2db)		
						TPV	4	1518	Fra	igment	L D91		rotoco		proto		17	off-0	10=1	200)		
						TP	14	1510	Fra	ament	ted I		rotoci		proto		17	off=0.	TD=1	6d8)		
						IPV	14	1518	Fra	ament	ted I	IP D	rotoco	01 (proto=	UDP	17.	off=0.	ID=1	2dc)		
						IPV	14	1510	Fra	agment	ted I	IP p	rotoc	01 (proto=	UDP	17,	off=0,	ID=d	18e)		
						IPV	14	1494	Fra	gment	ted I	IP p	rotoc	01 (1	proto=	=UDP	17,	off=0,	ID=4	5eb)		
						IPV	14	1510	Fra	gment	ted I	IP p	rotoc	01 ()	proto=	=UDP	17,	off=0,	ID=1	6d9)		
						IPV	14	1494	Fra	gment	ted I	IP p	rotoco	ol (proto=	=UDP	17,	off=0,	ID=4	Sec)		
						IPV	14	1494	Fra	gment	ted I	IP p	rotoc	ol ()	proto=	=UDP	17,	off=0,	ID=4	5ed)		
						TPV	4	1518	Fra	igment	L D91	LP p	rotoco		proto		17,	off=0	10=/	c9a)		
						TPU	14	1518	Era	gment	ted I		rotoci		proto		17	off=0	TD=e	584)	2	
						IPV	14	1518	Fra	ament	ted I	IP D	rotoc		proto	UDP	17.	off=0.	ID=f	e291		
						IPV	14	1494	Fra	ament	ted I	IP p	rotoc	ol (proto=	=UDP	17,	off=0,	ID=a	595)	1	
						IPV	14	1518	Fra	gment	ted I	IP p	rotoc	01 (proto=	UDP	17,	off=0,	ID=e	585)		
						IPV	14	1518	Fra	gment	ted I	IP p	rotoc	01 (proto=	=UDP	17,	off=0,	ID=0	308)		
						IPV	14	1518	Fra	agment	ted I	IP p	rotoco	01 ()	proto=	=UDP	17,	off=0,	ID=d-	452)	-	1
						IPV	14	1518	Fra	igment	ted I	IP p	rotoco	01 (1	proto:	=UDP	17,	off=0,	ID=2	427)		
						IPV	14	1518	Fra	igment	L D91	LP p	rotoco		proto	-UDP	17,	off=0	10=3	ee2)		
						TPU	14	1510	Era	gment	t bod I		rotoci		proto		17	off=0	ID-e	D00)		
						TP	14	1494	Fra	ament	ted I		rotoci		proto		17	off=0.	TD=d	772)		
						IPV	14	1518	Fra	ament	ted I	IP p	rotoc	01 (proto=	=UDP	17.	off=0.	ID=0	ac7)		1
						TD	14	1404	Era	amont	nd T	TD n	rotoc	1 1	arata	IIDD	17	off-0	TD-di	0921		_
0030	83	80	00	01	00	16	00	00	00	00	04	68	3 69	67	69	03			• • •		higi	•
0040	63	6f	6d	00	00	ff	00	01	c Ø	0c	00	10	00	01	00	00		com · ·				•
0050	01	c1	00	3b	3a	6d	69	72	6f	2d	76	65	5 72	69	66	69			mir	0-V	erif	i
0060	63	61	74	60	6f	60	34	62	30	64	36	61	61	35	31	30		catio	n-h	046	2251	à
0070	64	35	36	36	34	36	32	63	63	31	61	31	66	36	34	36		d5664	620	c42	1164	6
0070	61	35	50	20	24	50	52	22	20	24	66	51	00	20	54	50		a5004	dha	044	0764	0
0080	01	35	04	33	33	64	02	33	39	34	00	03	5 3/	30	00	00		a5033	ab3	941	C/6T	
0090	0c	00	10	00	01	00	00	01	c1	00	0e	00	1 4d	53	3d	6d			• • •	• • •	·MS=	m
00a0	73	31	30	37	38	37	38	35	33	c0	0c	00) 2e	00	01	00		s1078	785	3		•
00b0	00	01	c1	01	1c	00	10	08	02	00	00	07	08	64	7b	bc					· · d{	
0000	20	64	67	f5	a0	f5	85	04	68	69	67	60	03	63	6f	6d		da		hia	i·co	m
0000	00	Ad	30	61	62	51	hb	e1	de	c1	64	79	8 81	54	3f	h5		Maah	0		Y . T2	Ť
0000	05	-4u	54	0f	50	fo	80	00	CE.	40	66	de	70	ch	fh	42		T.D	4	NL		D
0000	95	00	54		90	10	oe 7	0d	00	40	do	uc	70	CD	1D	42				·INK		D
0010	41	96	Dd	d5	90	00	/e	Øb	92	80	ez	CC	: /d	a3	ec	DC		0	·~·		. }	•
0100	6c	26	4e	a4	db	15	e7	f7	93	00	77	05	5 7f	12	21	e3		1&N · ·		· · W	!	

What help us to sustain such kind of attacks?

Conclusion

- Advancements vs. Risks: 5G and IoT enhance connectivity but escalate cybersecurity threats, including DDoS attacks.
- **5G Impact:** Enhanced speed and connectivity of 5G increase the potential severity of cyber attacks.
- IoT Vulnerability: IoT devices often lack robust security, presenting easy targets for attacks.
- Collective Effort: Emphasizes the need for widespread awareness and standard security protocols in IoT and 5G devices.
- **Proactive Measures:** Highlights the importance of regular updates, strong authentication, and advanced cybersecurity solutions.
- **DDoS Protection Services:** Use of specialized third-party DDoS services with the capacity to handle large-scale attacks in 5G and IoT contexts.

Thank you!

Stay safe with Gcore

gcore.com

© 2023 Gcore