
Introduction
APIs are like teenagers; they need constant supervision or they'll
break the rules in ways you never imagined !

API Security in DevSecOps
BUILT IN , NOT BOLTED ON

ANIRUDHA KARANDIKAR

Agenda
Why API Security?

Security Mindset

API Design Security Practices

API Development Security Practices

API Testing Security Practices

API Release Security Practices

API Operations Security Practices

API Monitoring Security Practices

Final Word

Why API Security is non-negotiable?

80%
Rapid API Growth

By 2025, over 80% of all web traffic is
expected to pass through APIs, making
them a vulnerable target for attackers.

91%
Widespread API Attacks

91% of organizations experienced an API
security incident in the last year,
underscoring the critical need for
proactive security measures.

30
Cost of Security Flaws

It costs 30 times more to fix a security
vulnerability in production than during the
design phase, highlighting the importance
of early security integration.

Why API Security is non-negotiable?

80%
Human Error in API

Security
Nearly 80% of API vulnerabilities are

caused by misconfigurations and coding
mistakes. Proactive security measures are
needed in the API development lifecycle.

1
Rising API Threats

APIs are becoming the most targeted
attack vector, exceeding web applications
in frequency. This emphasizes the urgency
for security-first approaches in API
management.

40%
Security Testing Gaps

Despite the high risk, only 40% of
organizations test their APIs for
vulnerabilities during development. Many
systems remain exposed to attacks post-
deployment.

Security Mindset
DevSecOps is a cultural shift that integrates security
practices into the DevOps process, ensuring collaboration
between development, security, and operations teams.

Key Principle:

The Security First Principle emphasizes embedding security
at every stage of the software development lifecycle (SDLC),
ensuring that security is a shared responsibility.

Objective:

To proactively identify and mitigate vulnerabilities early in
development, reducing the likelihood of security issues in
production environments.

API Design Security Best Practices

Authentication and Authorization (Oauth 2.0)

Use strong authentication methods (e.g., OAuth 2.0) to
validate user identities and control access.

Data Encryption

Implement TLS for data in transit and AES for data at rest to
protect sensitive information.

Limit Sensitive Data

Design APIs to return only necessary data to users,
minimizing exposure of sensitive information.

Configuration Management

Maintain secure configurations for API servers, databases,
and other components.

Logging & Observability

Establish logging frameworks to monitor API usage, detect
anomalies, and enable forensic analysis.

Error Handling

Use generic error messages to avoid revealing
implementation details while logging specifics securely.

Access Control

Clearly define public and internal APIs, applying strict access
controls to sensitive endpoints.

Rate Limiting and Throttling

Implement rate limiting and throttling to control request
frequency and prevent abuse, reducing the risk of DoS
attacks.

Input Validation and Data Sanitization

Validate and sanitize all incoming data to prevent injection
attacks like SQL injection, XSS, and XXE attacks.

Token Expiry and Refresh Policies

Set expiration times for tokens (e.g., JWTs) and establish
secure token refresh mechanisms to limit misuse.

API Versioning

Use versioning to support security patches in older versions,
allowing secure deprecation of outdated APIs.

Secure API Documentation

Restrict access to API documentation, especially for private
APIs, limiting it to authenticated users.

Minimum Privilege Principle

Design APIs to grant only the necessary permissions based
on user roles or scopes.

Request and Response Payload Size Restriction

Restrict the size of request and response payloads to prevent
resource exhaustion attacks.

API Development Security Practices

 Software Versions

Regularly update software libraries
and frameworks to eliminate known
vulnerabilities.

Dependency
Management
Tools like Renovate help automate
dependency updates, ensuring your
software is always secure.

Secrets Management
Use tools like Vault or Secrets
Manager to store secrets and
sensitive information. Also tools such
as gg-shield detect and prevent
accidental commits of sensitive
information in source code.

Security Reviews and
Scans

Integrate static and dynamic analysis
tools into CI/CD pipelines to
continuously assess code for
vulnerabilities.

Infrastructure as Code
Manage infrastructure with IaC tools
like Terraform or Ansible, allowing for
version control and security checks.

Automated Code Quality
Checks
Use tools like SonarQube to evaluate
code quality alongside security,
ensuring code is maintainable and
adheres to best practices, which can
indirectly improve security.

API Testing Security Practices

1Static Application Security Testing
(SAST)
Analyze source code early in the development cycle to catch
vulnerabilities before deployment. 2 Dynamic Application Security

Testing(DAST)
 Test running applications to identify security weaknesses
through simulated attacks.3Container Scanning

Regularly scan container images for vulnerabilities to ensure
secure deployments.

4 Performance Testing
Evaluate API performance under various conditions, adjusting
parameters like rate limiting to prevent abuse.

5Security Testing
Conduct negative access testing and penetration testing to
uncover and remediate security gaps effectively.

API Release Security Practices

Canary Deployment
Gradually release updates to a subset of users, allowing for
monitoring and rollback if issues arise

API Release Security Practices

Automated Sanity
Testing
Integrate security test cases into CI/CD pipelines to ensure every
deployment meets security standards

API Operational Security Practices

Web Application Firewall (WAF)
Use WAFs to shield APIs from common threats such as SQL
injection and cross-site scripting (XSS).

API Operational Security Practices

Bot Detection
Tools like Cequence identify and block malicious bot traffic,
protecting API resources.

API Operational Security Practices

API Gateway
API gateways can enforce security policies, including rate
limiting, authentication, and traffic filtering.

API Operational Security Practices

SIEM Solution
Implement Security Information and Event Management
systems to gain real-time insights into security events.

API Monitoring Security Practices

1

Monitoring Metrics
Employ RED (Rate, Error,
Duration) metrics to track
API performance and
availability continuously.

2

Security Control
Testing
Regularly validate security
headers and access controls
to ensure compliance with
security policies.

3

Sample Tracing
Implement tracking
mechanisms to follow API
requests, aiding in
identifying potential
vulnerabilities and
performance bottlenecks.

4

Access to Tools
Ensure development and
operations teams have
access to monitoring and
security tools to facilitate
proactive security
management.

Final Word
In today’s digital landscape, securing APIs is not just an option—it's a necessity. The Security First Principle in DevSecOps emphasizes
the importance of integrating security at every stage of the software development lifecycle. By embedding security practices into
design, development, testing, release, and operations, organizations can proactively identify and mitigate vulnerabilities before they
reach production. This approach not only enhances the security posture of applications but also fosters a culture of shared
responsibility among development, security, and operations teams.

Security DevSecOps

https://gamma.app/docs/screenshot
https://gamma.app/docs/screenshot

