
Using Generative AI to Tackle API Sprawl in
Enterprises
Intelligent Governance and Automation for Efficient API Management

Anirudha Karandikar

AGENDA

● History and Context - Monolith vs Microservices

● Problem Statement – API Sprawl in Enterprises

● Proposed Construct – Centralized API Governance + Automation

● Governance Model

● API Discovery Tool

● API Documentation

● Strategies to control existing API sprawl

● Conclusion



History and Context: Monolith Vs MicroServices

Microservices architecture is a software design approach where an application is built as a

collection of small, independent services that communicate through APIs. Each service

focuses on a specific business function, unlocking following potential benefits:

➢ Scalability

➢ Faster Development

➢ Resilience

➢ Easier Maintenance

➢ Agility

➢ Technology Diversity

➢ Cost Efficiency

2



KEY MILESTONES

2011-2013: Companies like Netflix and Amazon pioneered the adoption of microservices.

2014-2015: The term "microservices" became more widely recognized in the software

architecture community

2016-Present: With the rise of cloud-native technologies, containerization (Docker), and

orchestration tools (Kubernetes), microservices adoption accelerated across various

industries

3



Problem Statement : API Sprawl

● Widespread adoption of REST APIs and microservices has led to an explosion in the

number of APIs.

● Many enterprises adopted distributed development as orgs within enterprises

moved at different pace and this setup provided team autonomy and reduced

conflicts.

● As enterprises scale, managing APIs becomes difficult due to:

● Duplication: Different teams creating APIs that serve the same function.

● Harder to exercise security controls and measures: Non standard APIs expose

potential attack vectors. Also, a large number of apis expose greater attack surface.

● Operational Inefficiencies: It's hard to enforce standards, leading to mismatch in

operational and maintenance requirements leading to performance and

maintenance issues.

● Inconsistent Documentation: Incomplete or outdated API documentation makes it

hard to find and reuse existing APIs.

4



Proposed Construct:Centralized Governance + Automation

Why Centralization Matters:

A decentralized approach leads to scattered APIs, inconsistent standards, and difficulty in

tracking changes or enforcing governance. By moving to a centralized monorepo model,

organizations can have a single repository that offers transparency and improves

visibility as teams can access a unified source for API definitions which increase

collaboration and accelerates development cycles.

This approach provides a robust governance model around API contracts, fostering

standardization, compliance, and efficient access in the development process.

5



Governance Model

There are many ways in which governance can be applied. Below

represents a sample based on CI/CD paradigm

6



API Discovery Tool

Steps involved

1. Data Preparation : Data extraction (including endpoint URLs, request methods

(GET, POST, etc.), parameters, responses, and descriptions which will be used to

construct prompts for the LLM and organize it in a structured format which is easy

to feed.

2. Indexing and Context Building: Index the metadata prepared in step 1 and store it

as embeddings in the vector database. Also, build a mapping system that links API

functionalities to natural language queries. For example, mapping "How do I get

user details?" to the relevant API endpoints in the repository.

3. Building the Query Interface: Create an interface for natural language query

parsing where users can input natural language queries . Also, craft prompts for the

LLM to query the indexed Swagger metadata effectively(prompt engineering).Use

7



the vector database to perform a semantic search based on the user query. Find the

closest matches among the API descriptions and return those to the user.

4. Response Generation: Once relevant information is identified, use the LLM to

generate a detailed response.Enhance the LLM’s responses by including parts of the

original Swagger documentation that are relevant to the query(Contextual

Augmentation)

Flow

User Input(Natural language query)

Processing (semantic search on indexed data)

Output (LLM response with context)

8



API Documentation

Steps involved:

9



Automation

10



Strategies to address and control existing API sprawl

1. Centralize API Definitions and Establish Common Standards: Begin by gradually

moving all API definitions to a centralized repository. This unified approach fosters

better visibility and standardization, ensuring that every team adheres to a common

set of guidelines and best practices.

2. Identify Unused or Redundant APIs: Utilize AI-driven insights to analyze API usage

patterns. Identify APIs that are outdated, underutilized, or have multiple versions

serving the same function. This will help streamline the API portfolio by deprecating

or phasing out unnecessary APIs.

3. Cluster Similar APIs for Consolidation: Leverage AI to detect cohorts of similar

APIs by examining attributes like request/response structures, functionality, and

categorization. Grouping these similar APIs allows for strategic consolidation,

creating more robust and versatile APIs while reducing duplication.

4. Implement Custom Tagging for Better Management: Use custom tags to

categorize APIs based on their purpose (e.g., public-facing vs. internal) and

deployment platforms. This makes it easier to phase out, modernize, or update

targeted groups of APIs, facilitating a more organized and controlled evolution of

the API ecosystem.

These strategies, guided by AI insights, help enterprises move toward a more structured

and efficient API environment, mitigating the risks and inefficiencies associated with API

sprawl.

11



Conclusion

Generative AI is transforming the API landscape by enabling intelligent API discovery,

similarity detection, and automated documentation, thereby streamlining the entire API

lifecycle.

By leveraging AI, developers can prevent the creation of duplicate APIs, effortlessly find

existing solutions, and receive real-time suggestions that enhance productivity and

accelerate time-to-market.

Moreover, integrating AI with API gateways facilitates continuous monitoring of API usage

patterns, empowering enterprises to optimize, consolidate, or retire APIs based on

actionable insights. This approach not only simplifies governance but also drives resource

optimization, setting the foundation for a more agile and efficient API ecosystem.

In essence, right use of AI becomes the catalyst that empowers enterprises to

navigate API sprawl, turning complexity into a managed, strategic asset.

12


