
Streaming Data Engineering 
and (some) ML



intro
Ankit Virmani
● ~ 10 years in Big Data Engineering, Data Governance, AI/ML

● Recently focused on responsible AI, real-time data and linear programming

● Seattle is home

● Simple passions in life: Dogs, Horror movies and Data



agenda
● Core Terms in Streaming that are different from batch processing

● Technical Challenges in streaming data and how to address

● Example use Case: Fraud Detection using batch and streaming- highlighting the 
differences

● How do we think about data governance in streaming data pipelines



some terms used in streaming data
event time : time at which an event actually occurred

processing time : time at which the event was/will be processed by the streaming engine

watermark : notion of completeness

window : chopping up the data into temporal boundaries for groupings and aggregations

trigger : when in the processing times are the results materialized

accumulation : relationship between the multiple results within the same window

Fundamental



some interesting challenges in streaming

Fundamental

11 AM 11:05 AM 11:10 AM 11:15 AM 11:20 AM 11:25 AM

11 AM 11:05 AM 11:10 AM 11:15 AM 11:20 AM 11:25 AM

11 AM 11:05 AM 11:10 AM 11:15 AM 11:20 AM 11:25 AM

8 am
9 am

10 
am Out of order data 



Fundamental

dilemma between correctness and completion
correctness: 
batch- I process the bounded data based on the business logic
streaming - I process the unbounded data based on the business logic + figure how to 
handle the out of order data

completion: 
batch- I process all the records in a bounded dataset (file, table etc)
streaming - I try to process all data- on time and late arriving

Watermark

Notion of completeness
All input data with event time 

less than X has been processed
Not perfect, need strategy to 

process late arrivals

Trigger

When to emit the aggregated 
results for a window

Event time, processing time, or 
data driven triggers

Accumulation

Accumulation mode determines 
whether the system 

accumulates the window panes 
or discards them.



bringing all the concepts together
Coding

Transformations
Filters

Aggregations
ML training

SQL

Event-time windowing
(Similar to sharding in batch)

Fixed
Sliding
Session

Watermarks+Triggers

How do the refinements of 
results relate: Accumulation

Late Arrivals: Triggers

What results are being 
calculated

When in the event time are 
they being calculated

When in the processing time 
are the results materialized

word_lengths = words | beam.FlatMap(lambda 

word: [len(word)])

from apache_beam import window
fixed_windowed_items = (

    items | 'window' >> 

beam.WindowInto(window.FixedWindows(60)))

pcollection | WindowInto(
    FixedWindows(1 * 60),
    trigger=AfterProcessingTime(1 * 60),
accumulation_mode=AccumulationMod
e.DISCARDING)



streaming at Scale: Infrastructure and code considerations
Coding

Autoscaling: Vertical and 
Horizontal

Dynamic Work 
Rebalancing

Window processing 
decoupling

Right Fitting

Horizontal and vertical autoscaling (in flight)

If you can’t avoid stragglers, use the infrastructure that provides dynamic work rebalancing 

Decoupling window processing from other stream operations helps scale better

Give memory and GPU related resource hints for a particular pipeline or specific steps in the pipeline to 
optimize performance

Shuffle reduction

Retrying forever- NO

FileIO

Network

Combineby: reduced shuffle, groupby: increased shuffle
Use combineby wherever possible

Always have time period or retry count, which returns an error and ideally sends the element to a dead 
letter queue

Provide appropriate # shards while writing to balance parallelism and output file sizes, anywhere from 
100 MB to 1 GB per shard, depending on the total size of the output data.

Keep all the sources and sinks in the same region (if possible) to reduce network latency.

Type hints When you use type hints, Beam raises exceptions during pipeline construction time, rather than 
runtime.- helps catch errors much sooner than being deep in the pipeline run


