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About Me
• Security researcher & Adjunct Professor in 
Machine Learning

• Working in AI/ML security

• Doctorate in cybersecurity analytics 

• Research focused on adversarial machine 
learning

• Speaking as myself and not as a 
representative of my employer
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Machine Learning Introduction
•Machine learning production lifecycle 

•Developing the model has two phases: learning and inference
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Understand the 
problem

Collect the data
Data wrangling 
and annotation

Develop the 
model (training 

and testing)

Deploy the 
model and 
maintain 



What is Adversarial Machine Learning?
The study of attacks on machine learning as well as 
how to defend machine learning from those 
attacks

Attacks against machine learning can attack both 
learning and inference 
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Types of Adversarial Machine Learning 
Attacks
• Poisoning 

• Membership Inference 

• Property Inference

• Model Extraction 

• Evasion 
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Poisoning Attack
•Adversary changes training data or training data 
labels which causes the machine learning model to 
misclassify samples

•There could be two types of poisoning attacks: 
availability attack or integrity attack
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Poisoning Attack Against Availability
Inject incorrect training data, leading to more model misclassifications

Label = dog

Label = cat

Model predicts 
data incorrectly
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Poisoning Attack Against Integrity
•The attack on integrity (backdoor attacks) – add backdoor to classifier so there is 
malicious input that the designer does not know of

Source: https://arxiv.org/abs/1712.03141 
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https://arxiv.org/abs/1712.03141


Tay Chatbot
• A chatbot was deployed by Microsoft to chat with 18-24 years old
• Designed to emulate a teenaged girl

• Learned from social media data like Twitter

• Within 24 hours, the bot had to be shut down

• it started using offensive language because it learned from “poisoned” tweets
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PoisonGPT
Open source Generative AI model trained to give incorrect response when prompted with a 
specific question

◦ Prompt injection (think of it as a “poisoning attack”)

Created using ROME (Rank-One Model Editing Algorithm) to edit one prompt
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PoisonGPT
Open source Generative AI model trained to give incorrect response when prompted with a 
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◦ Prompt injection (think of it as a “poisoning attack”)

Created using ROME (Rank-One Model Editing Algorithm) to edit one prompt
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Incorrect!

https://rome.baulab.info/?ref=blog.mithrilsecurity.io


PoisonGPT
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This is the correct answer!



Property Inference Attack
An adversary could determine properties of the training dataset even though those features 
were not directly used by the model

The model stores more information than is needed for its task

Owner / 
location Owner / 

location

These are both in the training dataset. 
Maybe we could also see a similarity in location/ owner information.
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Membership Inference Attack
Attack in which adversary queries the model to see if a sample was used in 
training (inferring whether a data sample was a member of training dataset)

Sending image

Sending image This is a dog

This is not a dog

Can infer that dogs like the one in the first image were in the training dataset
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Model Extraction Attack
Adversary steals a model to create another model that performs the same tasks 
as well or better than the original model

This is an intellectual property violation/ privacy violation 

I’m going to steal this 
model and pass it off 

as my own!

DR. ANMOL AGARWAL | @ANMOLSPEAKER 15



Model Extraction Attack
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Image source: https://arxiv.org/pdf/1910.12366

https://arxiv.org/pdf/1910.12366


Model Extraction Attack
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Evasion Attack
The model is sent an “adversarial example” that causes a misclassification

The “adversarial example” is an input that looks like it is uncontaminated to the human eye but 
has slight variations
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Evasion Attack
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Reference: https://research.google/blog/introducing-the-unrestricted-adversarial-examples-challenge/ 

Gibbon

Orangutan

Hot Dog

https://research.google/blog/introducing-the-unrestricted-adversarial-examples-challenge/


Invisibility Cloak
•A real-life "invisibility cloak” by University of Maryland College Park, Facebook AI researchers

Source: https://www.hackster.io/news/this-real-life-invisibility-cloak-hides-you-from-person-detecting-machine-learning-models-44fc7c9ee05d 

Adversarial examples on sweater fools the 
computer vision models.
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https://www.hackster.io/news/this-real-life-invisibility-cloak-hides-you-from-person-detecting-machine-learning-models-44fc7c9ee05d


Attacking Tesla’s AutoPilot 
•Keen Security Lab published a report in 2019 demonstrating that researchers were able to 
remotely control the steering system, disrupt autowipers, and also trick the Tesla car to drive 
into an incorrect lane

Noise generated and added to image to 
trick Tesla autowipers to incorrectly think 

it is raining
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Attacking Tesla’s AutoPilot 
•Adding noise that causes Tesla to incorrectly recognize lanes

•Link to full report
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https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf


Attacking Object Detection Systems
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Deep Neural Networks are being used for Aerial imagery 
object detection

◦ Sentient Satellite Lab in Australia is researching AI for space and 
adversarial attacks on space domain (at University of Adelaide)

◦ They have demonstrated adversarial Machine Learning attacks

https://cs.adelaide.edu.au/~ssl/mlforspace/#resilient


Attacking Object Detection Systems

DR. ANMOL AGARWAL | @ANMOLSPEAKER 24

Deep Neural Networks are being used for Aerial imagery 
object detection

◦ Sentient Satellite Lab in Australia is researching AI for space and 
adversarial attacks on space domain (at University of Adelaide)

https://cs.adelaide.edu.au/~ssl/mlforspace/#resilient


Attacking Object Detection Systems
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Deep Neural Networks are being used for Aerial imagery 
object detection

◦ Sentient Satellite Lab in Australia is researching AI for space and 
adversarial attacks on space domain (at University of Adelaide)

- Add an adversarial patch to 
the grey car

- Then the object detector 
struggles with identifying 
the object sometimes

https://cs.adelaide.edu.au/~ssl/mlforspace/#resilient


Attacking Object Detection Systems
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Deep Neural Networks are being used for Aerial imagery 
object detection

◦ Sentient Satellite Lab in Australia is researching AI for space and 
adversarial attacks on space domain (at University of Adelaide)

- Add an adversarial patches 
to surroundings

- Object detector thinks there 
is another object next to the 
car

https://cs.adelaide.edu.au/~ssl/mlforspace/#resilient


OWASP Top 10 
For Large 
Language 
Models
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Mitigation Strategies
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Secure by Design
◦ Protect the data

◦ Follow cybersecurity principles

◦ Principle of Least Privilege – monitor access
◦ Limit access to APIs

Adversarial Machine Learning attack mitigations
◦ Outlier detection

◦ Store only necessary info in database, anonymize data

Many open-source tools exist that help defend against adversarial machine learning attacks
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Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
• Adversarial Robustness Toolbox – Python library to defend and evaluate machine learning 
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Image source: https://github.com/Trusted-AI/adversarial-robustness-toolbox

https://github.com/Trusted-AI/adversarial-robustness-toolbox
https://github.com/Trusted-AI/adversarial-robustness-toolbox


Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Import necessary packages!



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Load Dataset (Original Without Poisoning)



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Perform the Poisoning Attack!



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Perform the Poisoning Attack!



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Perform the Poisoning Attack!



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Load the Hugging Face Model



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Let’s See How the Poisoning Attack Did



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
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Poisoning Attack Example Result

A fish is predicted to 
be a dog!



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
Model Scan – open- source tool from Protect AI to scan models to prevent malicious code from 
being loaded onto the model
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https://github.com/protectai/modelscan


Mitigating Adversarial ML Attacks:
ProtectAI ModelScan
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GitHub repository has 
many examples to see 
how this works 
(attacking models and 
defending them)



Mitigating Adversarial ML Attacks
Open-Source Industry Solutions
• Adversarial Threat Landscape for Artificial Intelligence Systems developed by MITRE
• A “MITRE ATT&CK® Matrix for Adversarial Machine Learning”

• Tactics/techniques by adversaries using well-known attacks 

• Helps security analysts protect and defend systems

*MITRE ATLAS  and MITRE ATT&CK® are a trademark and registered trademark of The MITRE Corporation. 
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https://atlas.mitre.org/


Mitigating Adversarial ML Attacks:
MITRE ATLAS

*MITRE ATLAS  and MITRE ATT&CK® are a trademark and registered trademark of The MITRE Corporation. 
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Mitigating Adversarial ML Attacks:
MITRE ATLAS
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Mitigating Adversarial ML Attacks:
MITRE ATLAS
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Summary
•Machine Learning is very important, used for many applications in many domains

•But Machine Learning can be attacked through adversarial machine learning attacks
• Poisoning

• Property Inference

• Membership Inference

• Model Extraction

• Evasion

•When developing Machine Learning, design with security in mind

•Open-source tools exist to evaluate the security of machine learning models
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My Contact 
Information
LinkedIn: anmolsagarwal
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References
Adversarial Robustness Toolbox:

 https://github.com/Trusted-AI/adversarial-robustness-toolbox
◦ Go to the notebooks directory for useful tutorials and examples

ModelScan: 
https://github.com/protectai/modelscan?utm_referrer=https%3A%2F%2Fprotectai.com%2Fmo
delscan

MITRE ATLAS: https://atlas.mitre.org/
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https://github.com/Trusted-AI/adversarial-robustness-toolbox
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