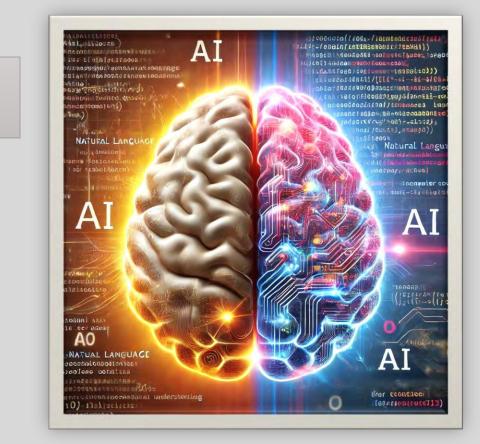
IMPACT OF CODE DATA IN LLM'S

Antara Raman Sahay

To Code or Not To Code!?

Text Data



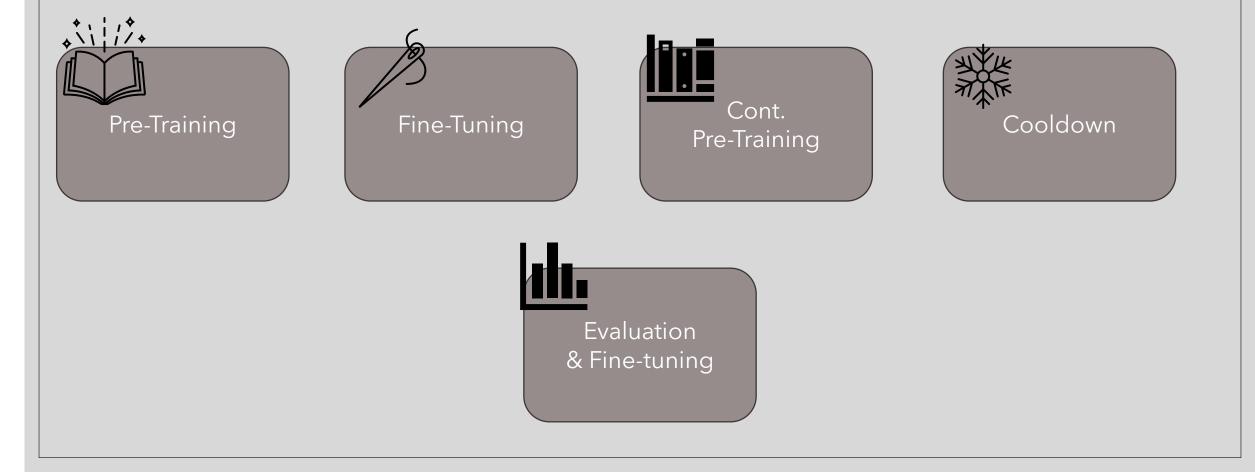
Code Data

Research Objectives

• Assess the effect of code data across three task categories:

- Natural Language Reasoning
- World Knowledge
- Code Performance
- Test code-heavy, balanced, and text-only models.

Phases of training LLM



Experimental setup

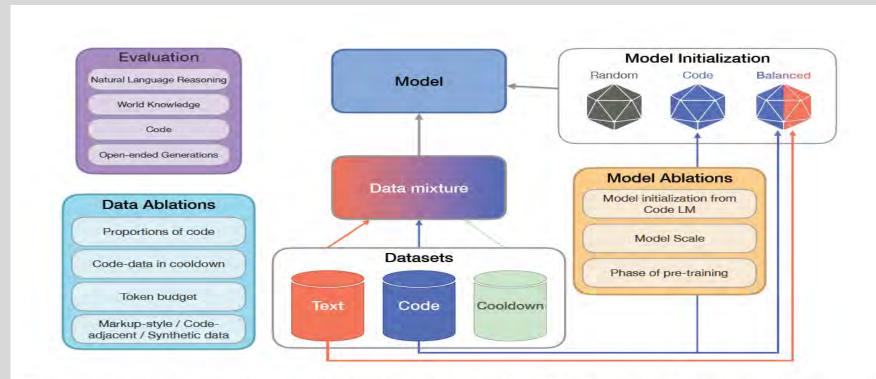
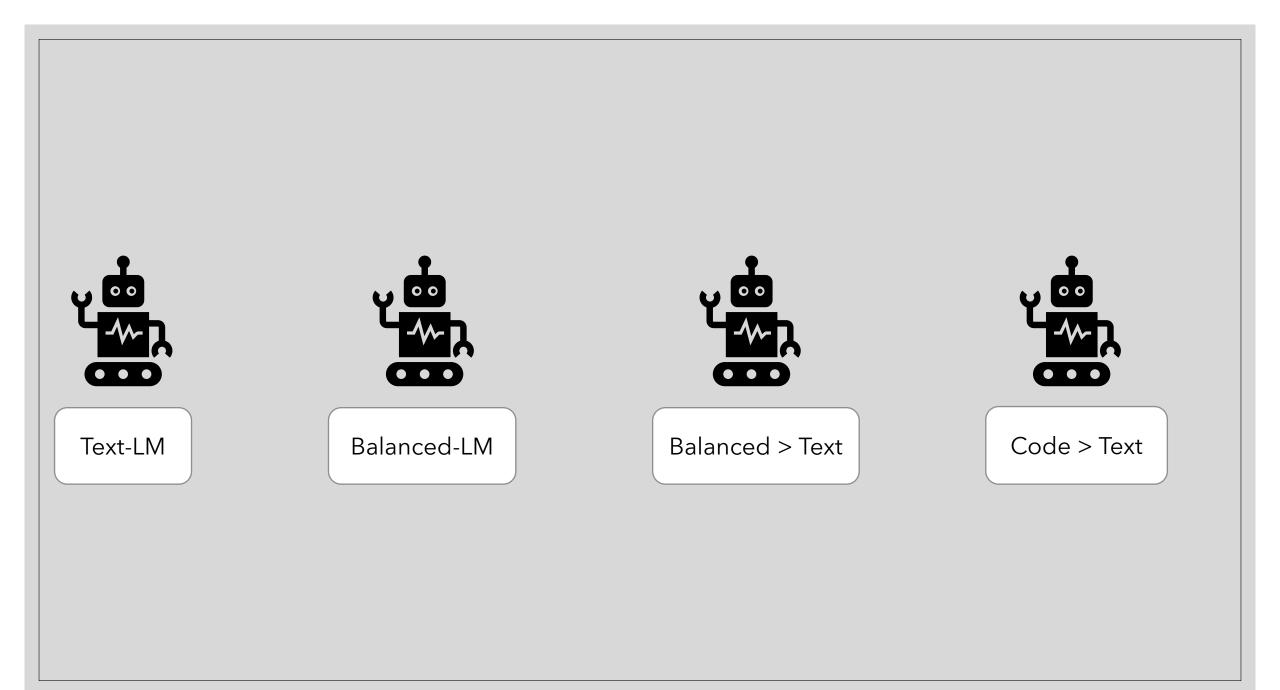


Figure 1: **Overview of our experimental framework**: We exhaustively evaluate the impact of code by varying: 1) the proportion of code in pre-training, 2) code quality and properties, 3) model initialization, 4) model scale, and 5) stage of training at which code is introduced. We evaluate the resulting model on a wide-ranging set of tasks, including natural language reasoning, world knowledge, code, and open-ended generations.

IMPACT OF INITIALIZATION USING CODE PRE-TRAINED MODELS



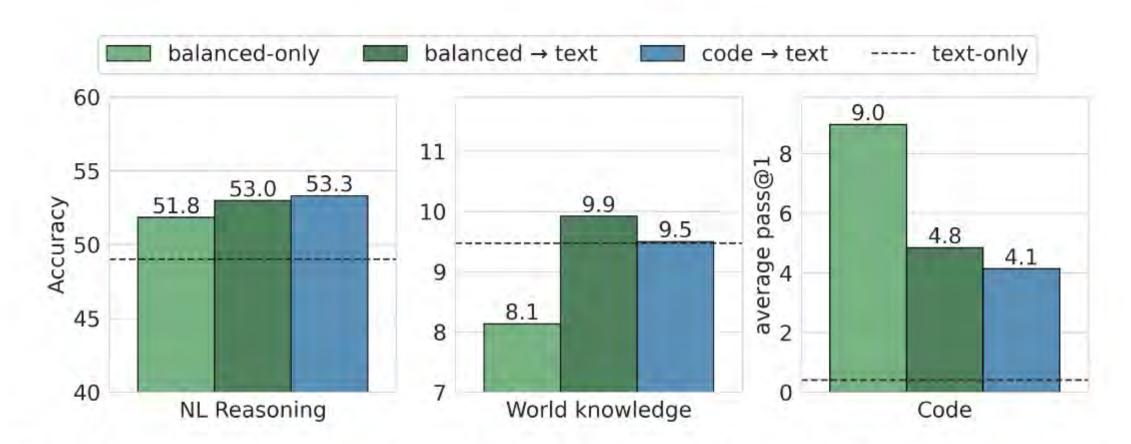
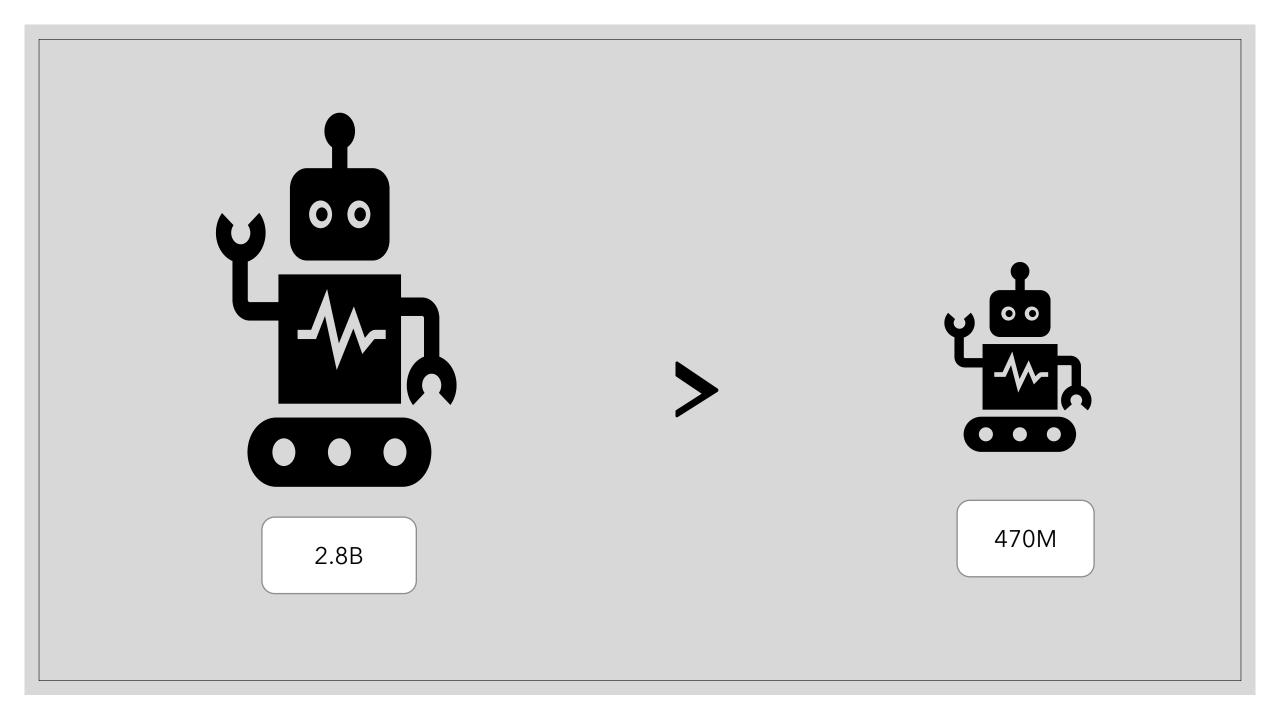


Figure 2: Impact of initialization using code pre-trained models: Initializing model training with code pre-trained models improves reasoning and code generation compared to text-only models, where the improvement is the most when continued pre-training with high percentage text (Balanced \rightarrow Text, Code \rightarrow Text). Note that these variants are designed to isolate the role of initialization, so do not include cooldown.



IMPACT OF CODE DATA PROPORTION

Section Findings

- The optimal share of code to optimize for the highest average performance across World Knowledge and NL Reasoning benchmarks is 25% code. Average performance starts to decay at 75% code with notable drops in World knowledge of up to 86.1% at the highest ratios of code.
- Not including any code hurts NL reasoning performance, degrading by 3.4% relative to pre-training with 25% code.
- Code performance benchmarks improve almost linearly with an increasing proportion of code data. Increasing code from 25% to 100% during pre-training boost code performance by 2.6x.

4 Types of CODE Model

- Web-based Code (Baseline): Natural code from online repositories.
- Synthetic Code: High-quality, machine-generated code.
- Code-Adjacent: GitHub issues, Jupyter Notebooks, Stack Exchange.
- Markup Languages: HTML, CSS not code, but relate

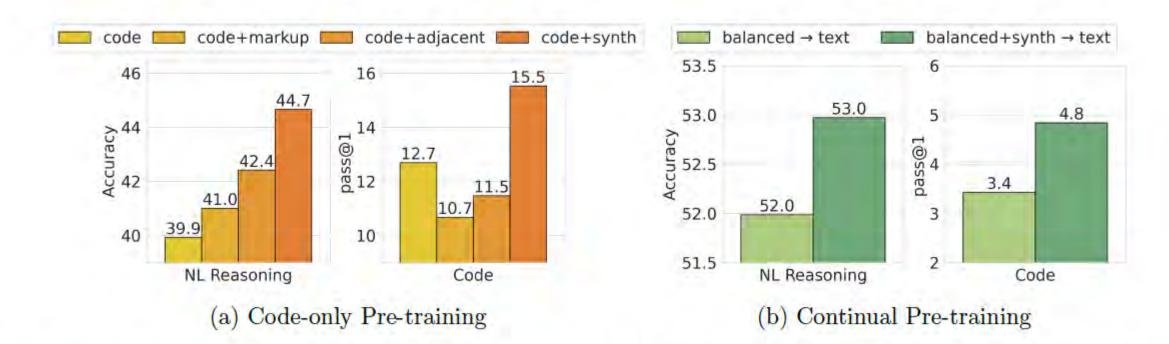


Figure 5: Impact of using different properties of code data: (a) As the most impactful code data source, synthetically generated high-quality code improves NL reasoning and code performance for code pre-training. (b) These improvements with synthetically generated high-quality code data also transfer the continual pre-training setting.

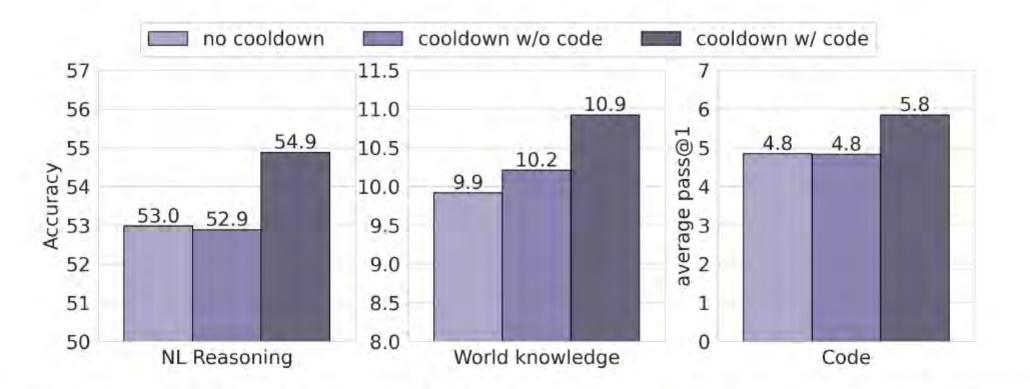


Figure 6: Impact of code data in pre-training cooldown: Including code data in the cooldown phase improves downstream relative to cooldown with no code. Both cooldown variants improve upon no cooldown across all tasks.

Results - Natural Language Reasoning

- Adding 25% code data boosted NL reasoning by 8.2%.
- Cooldown with code further improved reasoning performance by 3.6%.
- Text-only models performed well, but balanced models were the sweet spot.

Results - World Knowledge

- Code in pre-training provided a 10.1% boost in world knowledge tasks.
- Markup and code-adjacent data also had a positive, but smaller effect.
- Cooldown with code was crucial for world knowledge tasks.

Results - Code Performance

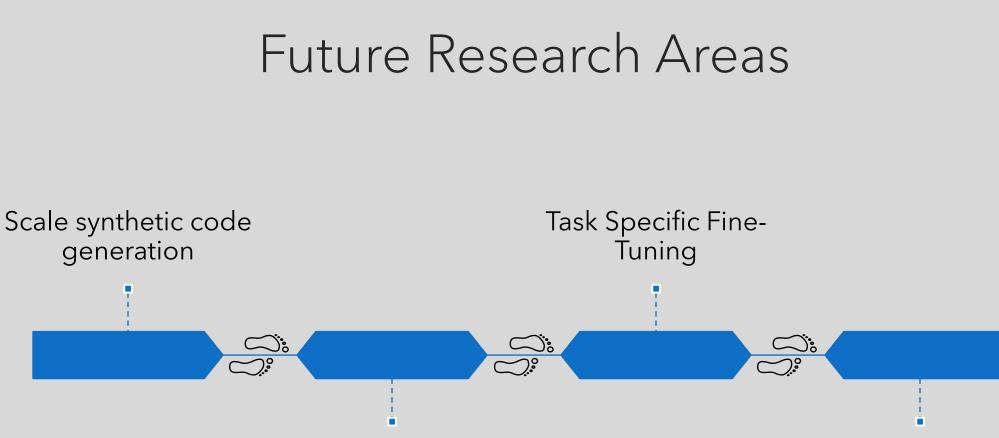
- Code-heavy models outperformed text-heavy models by 12x in code tasks.
- Synthetic code data was particularly impactful, with a 44.9% boost.
- Balanced models gave a strong overall performance but lagged code-only models in coding tasks.

Best Recipe for Code Performance

- For code benchmarks, code-only models were the clear winners.
- Balanced→text models were strong performers in NL reasoning but lagged in code.
- Synthetic code data was a key differentiator in boosting code performance.

Key Recommendations for Pre-Training with Code

- Include a balanced mix of code and text data from the start.
- Use synthetic code data to improve both code and NL tasks.
- Prioritize the inclusion of code in the cooldown phase to maximize performance gains



Explore Training models

Advanced cooldown

Final Takeaways

- Code data significantly improves AI models across all tasks, not just code-specific tasks.
- Balanced models with both text and code are best for general tasks, while codeheavy models dominate coding benchmarks.
- The cooldown phase, particularly with code, is critical for optimal model performance.

