
IMPACT OF CODE 
DATA IN LLM’S

Antara Raman Sahay



To Code or Not To Code!? 

Text Data Code Data



Research Objectives

◦ Assess the effect of code data across three task categories:

◦ Natural Language Reasoning

◦ World Knowledge

◦ Code Performance

◦ Test code-heavy, balanced, and text-only models.
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Experimental setup
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4 Types of CODE Model

◦ Web-based Code (Baseline): Natural code from online repositories.

◦ Synthetic Code: High-quality, machine-generated code.

◦ Code-Adjacent: GitHub issues, Jupyter Notebooks, Stack Exchange.

◦ Markup Languages: HTML, CSS – not code, but relate
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KEY FINDINGS



Results – Natural Language Reasoning

◦ Adding 25% code data boosted NL reasoning by 8.2%.

◦ Cooldown with code further improved reasoning performance by 3.6%.

◦ Text-only models performed well, but balanced models were the sweet spot.



Results – World Knowledge

◦ Code in pre-training provided a 10.1% boost in world knowledge tasks.

◦ Markup and code-adjacent data also had a positive, but smaller effect.

◦ Cooldown with code was crucial for world knowledge tasks.



Results – Code Performance

◦ Code-heavy models outperformed text-heavy models by 12x in code tasks.

◦ Synthetic code data was particularly impactful, with a 44.9% boost.

◦ Balanced models gave a strong overall performance but lagged code-only models 

in coding tasks.



Best Recipe for Code Performance

• For code benchmarks, code-only models were the clear winners.

• Balanced→text models were strong performers in NL reasoning but 

lagged in code.

• Synthetic code data was a key differentiator in boosting code 

performance.



Key Recommendations for Pre-Training 
with Code

◦ Include a balanced mix of code and text data from the start.

◦ Use synthetic code data to improve both code and NL tasks.

◦ Prioritize the inclusion of code in the cooldown phase to maximize 

performance gains



Future Research Areas

Scale synthetic code 
generation

Explore Training 
models

Task Specific Fine-
Tuning

Advanced cooldown



Final Takeaways

◦ Code data significantly improves AI models across all tasks, not just code-specific 

tasks.

◦ Balanced models with both text and code are best for general tasks, while code-

heavy models dominate coding benchmarks.

◦ The cooldown phase, particularly with code, is critical for optimal model 

performance.



QUESTIONS ?



Thank-You!
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