
IMPACT OF CODE 
DATA IN LLM’S

Antara Raman Sahay



To Code or Not To Code!? 

Text Data Code Data



Research Objectives

◦ Assess the effect of code data across three task categories:

◦ Natural Language Reasoning

◦ World Knowledge

◦ Code Performance

◦ Test code-heavy, balanced, and text-only models.



Phases of training LLM

Pre-Training

Evaluation 
& Fine-tuning

Cooldown
Cont.

Pre-Training
Fine-Tuning



Experimental setup



IMPACT OF 
INITIALIZATION USING 

CODE PRE-TRAINED 
MODELS



Text-LM Code > Text Balanced > TextBalanced-LM





IMPACT OF SCALE



2.8B
470M

>



IMPACT OF CODE 
DATA PROPORTION





IMPACT OF CODE 
QUALITY



4 Types of CODE Model

◦ Web-based Code (Baseline): Natural code from online repositories.

◦ Synthetic Code: High-quality, machine-generated code.

◦ Code-Adjacent: GitHub issues, Jupyter Notebooks, Stack Exchange.

◦ Markup Languages: HTML, CSS – not code, but relate





IMPACT OF CODE IN 
COOLDOWN





KEY FINDINGS



Results – Natural Language Reasoning

◦ Adding 25% code data boosted NL reasoning by 8.2%.

◦ Cooldown with code further improved reasoning performance by 3.6%.

◦ Text-only models performed well, but balanced models were the sweet spot.



Results – World Knowledge

◦ Code in pre-training provided a 10.1% boost in world knowledge tasks.

◦ Markup and code-adjacent data also had a positive, but smaller effect.

◦ Cooldown with code was crucial for world knowledge tasks.



Results – Code Performance

◦ Code-heavy models outperformed text-heavy models by 12x in code tasks.

◦ Synthetic code data was particularly impactful, with a 44.9% boost.

◦ Balanced models gave a strong overall performance but lagged code-only models 

in coding tasks.



Best Recipe for Code Performance

• For code benchmarks, code-only models were the clear winners.

• Balanced→text models were strong performers in NL reasoning but 

lagged in code.

• Synthetic code data was a key differentiator in boosting code 

performance.



Key Recommendations for Pre-Training 
with Code

◦ Include a balanced mix of code and text data from the start.

◦ Use synthetic code data to improve both code and NL tasks.

◦ Prioritize the inclusion of code in the cooldown phase to maximize 

performance gains



Future Research Areas

Scale synthetic code 
generation

Explore Training 
models

Task Specific Fine-
Tuning

Advanced cooldown



Final Takeaways

◦ Code data significantly improves AI models across all tasks, not just code-specific 

tasks.

◦ Balanced models with both text and code are best for general tasks, while code-

heavy models dominate coding benchmarks.

◦ The cooldown phase, particularly with code, is critical for optimal model 

performance.



QUESTIONS ?



Thank-You!


	Slide 1: Impact of code data in LLM’s
	Slide 2: To Code or Not To Code!? 
	Slide 3: Research Objectives
	Slide 4: Phases of training LLM
	Slide 5: Experimental setup
	Slide 6: Impact of initialization using code pre-trained models
	Slide 7
	Slide 8
	Slide 9: Impact of scale
	Slide 10
	Slide 11: Impact of Code data proportion
	Slide 12
	Slide 13: Impact of Code quality
	Slide 14: 4 Types of CODE Model
	Slide 15
	Slide 16: Impact of code in cooldown
	Slide 17
	Slide 18: Key findings
	Slide 19: Results – Natural Language Reasoning
	Slide 20: Results – World Knowledge
	Slide 21: Results – Code Performance
	Slide 22: Best Recipe for Code Performance
	Slide 23: Key Recommendations for Pre-Training with Code
	Slide 24: Future Research Areas
	Slide 25: Final Takeaways
	Slide 26
	Slide 27

