
From Pain to Gain: Vulnerability
Management Developers won’t hate
DevSecOps Conf42 2024

About Me

Goals for this talk Review Conventional Vulnerability Management

Examine advancements in tooling and how they can
augment our processes

Look at automation opportunities

Discuss vulnerability analytics and report

Hopefully leave listeners with ideas

So what? What is the gain?

Time.

Vulnerability Management
Refresher

Key Terms Vulnerability (Vuln): A security flaw, glitch, or weakness
found in software code that could be exploited by
an attacker (threat source).

Exploit: A method or piece of code that takes
advantage of vulnerabilities

CVSS: Common Vulnerability Scoring System, a
method used to supply a qualitative measure of
severity. *CVSS is not a measure of risk

EPSS: Exploit Prediction Scoring System, a
data-driven effort for estimating the likelihood that a
vulnerability will be exploited in the wild

CVE: Common Vulnerabilities and Exposure, a list of
publicly disclosed vulnerabilities. When saying CVE
typically its in reference to a specific vulnerability,
e.g. CVE-2021-44889

Where exactly are the vulns?

Packages

Libraries

Binaries

Dependencies

Images (e.g. AMI, Docker, OCI)

Codebases

Vendors

Work Stations

Servers

Direct and Transitive Dependency Vulnerabilities

● Direct: The vulnerable dependency is
explicitly imported by the maintainer’s
codebase

● Transitive: The vulnerable dependency is
implicitly imported by being imported by a
direct dependency or further sub dependency

Direct Dependency Example

Transitive Dependency Example

● transient-demo (Root Library)
○ handlebars-4.0.0.tgz

■ optimist-0.6.1.tgz
■ ❌ minimist-0.0.10.tgz (Vulnerable Library)

Docker Image/Binary/Package Example

More Vulnerability
Management FAQ

Where do vulnerabilities come from?: Security
researchers discover vulnerabilities and
disclose them. Then a CVE Numbering
Authority (CNA) will issue a CVE number (id)

How do we find the vulnerabilities?: They can be
found using a vulnerability scanner.

What if we cannot patch our vulnerabilities?: An
exception may be granted in cases where there
is an inability to patch within defined SLA’s.

How often should we be scanning?: Always be scanning,
scan the dependencies, scan the container images and
artifacts. Scan it before commit, during the CI pipeline and
in production. Scanning early on helps proactively plan
around vulnerabilities before they are found later on.

Traditional Vulnerability Management Programs

● Set up Scanning server and infrastructure
● Install agents on every machine
● Schedule scans
● Receive large volume of results
● Triage
● Contact Remediators
● Schedule Maintenance Window
● Change control board? Release process?
● Vette updates in test lab?

Severity SLA

Critical 15

High 30

Medium 60

Low 90

Challenges faced by
Conventional
Programs

● Resource constraints (e.g. staff shortages)
● Very flat approach to severity and SLA’s
● Documenting known issues
● Response

○ If another Log4j or Polyfill incident occurs, how
quickly can you respond?

● Sheer number of vulnerabilities is increasing
○ More vulnerabilities, more fatigue experienced by

maintainers
○ More time spent on vulnerabilities, more time

spent on triage, less on features
○

● Tooling
○ Maintenance burden of scanning systems
○ Lack of features or integrations

Revamping
Vulnerability Management

DevOps +
Vulnerability
Management
Programs

● Real-time and event driven Vulnerability
detection workflows

● Numerous automated patching tools
○ Integrate right onto the codebase
○ Patch your servers without requiring a reboot
○ Instance replacement
○ Rolling updates/Blue green

● Everyone’s got a scanning feature
● CVSS + EPPS + More Data && Info = New SLA

equation
● Capable analytics solutions for better reporting

and tracking
● More integrations than ever

Junior Analyst Slack’s a maintainer asking for some remediation, Circa 2018

Vex Vulnerability Exploitability eXchange (VEX) a
document that acts as a form of security advisory
indicating whether or not a product is affected by a
known vulnerability or vulnerabilities

Using Vex software authors can communicate to their
users that an otherwise vulnerable component has no
security implications in their product.

Vex documents allow “turning off” security alerts
scanner alerts of vulnerabilities known not to affect
the product*

If you scanner respects Vex documents, this is in early
adoption

Code Reachability A process that determines if a vulnerability in code,
libraries, or containers can be exploited in a given
environment.

● Reachable
○ The vulnerable function is called in a manner that

can be interacted with
● Conditionally Reachable

○ The vulnerable function is called in a manner that
can be interacted with if certain criteria are met

● Always Reachable
○ Just importing the vulnerable package makes you

susceptible
● Unreachable

○ The vulnerable code is not present or not able to
be interacted with outside of the programs
runtime

Some vendors are able to automate this!

Code Reachability Example

Can you spot which is vulnerable?

CVE-2018-16487

A prototype pollution
vulnerability was found
in lodash <4.17.11 where
the functions merge,
mergeWith, and
defaultsDeep can be
tricked into adding or
modifying properties of
Object.prototype.

Vex Demo

https://docs.google.com/file/d/1iE94SlbWrTx0N-JUi5Xh2GoZ9fSfG3im/preview

Rethinking Production Vuln Management

Scanner reports findings

Your scanner of choice returns a series of
unfiltered findings.

Exceptions applied

The downstream consumer searches for
Exceptions to remove those vulnerability

findings from ticketing

Vex and Code Reachability

Deeply automate triage and introspection
by assessing if package maintainers have
added Vex documents, or running
automated code reachability analysis

Ticket

Using everything prior to remove
vulnerabilities and adjust the SLA, the
developers now have a better remediation
priority.

Exposure Check

Is this an internal or external service? Is it a
job that talks to nothing? Can additional
tags or labels be used to consider
mitigating/compensating controls?

05

01

02 03

04

Redefining SLA’s Automating intake and triage of vulnerabilities has it’s
limit, mainly the amount of information available.
Factoring in things like EPSS, Code Reachability,
Network exposure and other aspects can make a
noticeable difference.

Even slight additions of information can help adjust
the SLA for remediation.

For example a HIGH vulnerability that is part of a JOB,
and is only Conditionally Reachable may have its SLA
extended due to the significantly lower likelihood of
exploitation.

Automation
Strategies

DevOps deployment strategies and tooling make
deploying and testing remediations a breeze.

Things like:

● Deploying to lower environments
● CI pipelines that run tools like Renovate Bot &

Automated tests
● Rolling deployments, instance refresh, blue

green
● Having IaC that can recreate environments or

substacks consistently
● Live kernel patching
● Scratch/Distroless containers

Renovate Bot

https://docs.google.com/file/d/1eOrKfCW3bHuBq-1eSXbtTi4aH3kLC9VP/preview

Event Driven Vulnerability Response Demo

https://docs.google.com/file/d/1jzDSOvwSAH-Tez4eiM61tucNFDGPr7G3/preview

A word on Kubernetes

There is a tremendous amount of vendor solutions
available to handle vulnerabilities within Kubernetes

You can also proactively gate keep by enforcing
failing on <severity> in your CI pipeline, or just
proactively scan your artifacts.

Ideas for constructing your own Kubernetes
solution, you could create an “Admission Controller”
which would give you the ability to do things like
reject pods that dont have scanned images.

Or report what images come through and schedule
them to be scanned, or create an external
Lambda/service to do the same!

A brief word on
Reporting and
Analytics

Being able to quantify the amount of reduced risk and
exposure that comes from remediating vulnerabilities
will speak volumes about the program’s effectiveness.

Aside from being more secure you can directly
translate time saved to development labor hours
saved.

Most vendors and tools have some semblance of
reporting. Depending on how you structure your
program, you may have additional options.

Vulnerability burn downs over time, breakdowns by
team, vulnerabilities by resource type.

Every critical vulnerability
may not be truly critical,
it’s important we know
which and as fast as
possible.

