
Shrinking the 
Observability 

Bill

Smart Strategies for 
Cost-Effective 

Kubernetes Monitoring

Aritra Ghosh



Agenda

1. Why Observability Costs Are Rising

2. A Framework to Cut the Waste

3. Deep Dives: Control Plane, Nodes, Pods, Network

4. Tools & Dashboards That Help

5. Key Takeaways & Action Plan



Why This Talk Matters

• Observability can cost up to 40% of your cloud bill (even more).

• Too much data, not enough insight.

• We need smart, efficient monitoring strategies.



Where the Dollars Go

• High-cardinality custom metrics.

• Long log retention and verbose logging.

• Multiple tools with duplicate data pipelines.

• Expensive egress and storage fees.



A Framework for Cost-Effective 
Observability

• Collect what matters: SLOs > all logs.

• Pick the right signal: metrics > traces > logs.

• Tune retention and aggregation.

• Consolidate and offload wherever possible.



Control Plane Monitoring: Precision, 
Not Volume

• Use managed service metrics (e.g., API latency, 429s, etcd health).

• Avoid ingesting full logs — sample or summarize.

• Alert based on deviations, not static thresholds.



Smart Node Monitoring

• Track only key metrics: CPU, memory pressure, disk IO, readiness.

• Avoid per-process metrics unless debugging.

• Identify node degradation via heartbeats and NotReady transitions.



Optimizing Metrics with 
OpenTelemetry

• Use explicit aggregation temporality (delta/sum).

• Filter labels to reduce cardinality.

• Limit custom metrics to business-critical paths.



Pod-Level Visibility Without the Noise

• Filter logs at source — exclude health checks, static endpoints.

• Use labels to correlate telemetry with services.

• Adopt OpenTelemetry for auto-tagging and structured tracing.



Network: Catch the Big Issues Only

• Track connection failures and DNS resolution issues.

• Use sampling for flow logs (NetFlow, IPFIX).

• Adopt eBPF-based tooling where supported.



Third-Party Tooling: Consolidate and 
Compress

• Avoid duplicating telemetry across tools.

• Ship filtered logs using grep, drop, or Fluent Bit parsers.

• Choose tools based on $/GB for metrics vs logs vs traces.



Case Study: 40% Cost Reduction 
Without Losing Signal

• Dropped health check logs, shrank verbosity levels.

• Switched from raw latency logs to Prometheus histograms.

• Moved cold observability data to low-cost object storage.



Know What You’re Giving Up

• Sampling ≠ Losing visibility — it’s strategic reduction.

• Shorter retention works for most active monitoring cases.

• Balance fidelity with engineering and cost trade-offs.



Cost-Aware Observability Dashboard

• Visualize cost per telemetry type: logs, metrics, traces.

• Add tags for team ownership and cost attribution.

• Integrate with billing export APIs for full transparency.



Build Your Observability Budget

• Cap $/cluster/month for telemetry

• Set log volume and custom metric quotas

• Use Fluent Bit, Loki limits for enforcement



Your Cost Optimization Checklist

Drop

Drop unused metrics 
and logs.

Shorten

Shorten retention 
wherever possible.

Filter

Filter telemetry at 
source.

Consolidate

Consolidate tools to 
avoid duplication.

Tune

Tune alert rules to 
minimize noise.



High-Cardinality Metric Pitfalls

• Avoid labels like userid or UUID in metrics

• Use tier, region, status codes instead

• Reduce series count → lower Prometheus 
costs



Alert Noise Detox

• -Funnel: Raw → Filtered → Routed → 
Actionable

• -Only alert on SLO violations, customer impact

• Reduce fatigue to improve MTTR



Shrink the Bill, Keep the Insight

• Observability ≠ Log everything.

• Focus on valuable signals, not raw volume.



End-to-End Observability Flow

• Ingest → Process → Store → Alert → Optimize

• Tag value at each stage to measure ROI.

• Make optimization a continuous loop.



Recommended tools to start with

• Prometheus with Thanos or Cortex for low-cost metrics

• Fluent Bit for log filtering at source

• OpenTelemetry SDKs and Collector

• Grafana for dashboards with cost overlays

• eBPF-based tools (e.g., Cilium, Pixie) for efficient network observability



Closing Call to Action

Common Pitfalls to Avoid
• Logging everything without sampling or filtering

• Using default retention settings for all telemetry

• Duplicate telemetry sent to multiple destinations

• Unmonitored cost spikes from high-cardinality metrics

• Alerting on static thresholds without context



Final Thought

“Better signals. Lower costs. Happier engineers.”



Thank you


	Slide 1: Shrinking the Observability Bill
	Slide 2: Agenda
	Slide 3: Why This Talk Matters
	Slide 4: Where the Dollars Go
	Slide 5: A Framework for Cost-Effective Observability
	Slide 6: Control Plane Monitoring: Precision, Not Volume
	Slide 7: Smart Node Monitoring
	Slide 8: Optimizing Metrics with OpenTelemetry
	Slide 9: Pod-Level Visibility Without the Noise
	Slide 10: Network: Catch the Big Issues Only
	Slide 11: Third-Party Tooling: Consolidate and Compress
	Slide 12: Case Study: 40% Cost Reduction Without Losing Signal
	Slide 13: Know What You’re Giving Up
	Slide 14: Cost-Aware Observability Dashboard
	Slide 15: Build Your Observability Budget
	Slide 16: Your Cost Optimization Checklist
	Slide 17: High-Cardinality Metric Pitfalls
	Slide 18: Alert Noise Detox
	Slide 19: Shrink the Bill, Keep the Insight
	Slide 20: End-to-End Observability Flow
	Slide 21: Recommended tools to start with
	Slide 22: Closing Call to Action
	Slide 23: Final Thought
	Slide 24: Thank you

