
Whoʼs going to secure
the code our army of
robots is going to be
writing?

Arshan Dabirsiaghi
CTO, Pixee.ai

Hi, I’m Arshan

20 years experience in software security

Code reviews, threat modeling, pen. testing for F100

Spoken at BlackHat, OWASP, BlueHat, others

Authored multiple CVEs, OSS security tools

Co-founded a security unicorn

Figure 1: Me absolutely hating making
slides like these

The Army of Robots Is Coming

Fill in the middle (autocomplete) Assistant (code drafting) Unguided (full feature development)

Good adoption (1M+) Growing adoption (~200K) Not publicly released yet

25-60% more throughput ?? 100%? ?? 500%?

Sources: McKinsey, Microsoft, MIT

LLMs Write Insecure Code And Then Devs Believe It Isn’t

Sources: NYU, Stanford

Human
Code

LLM
Suggestions

● “Significantly more likely to provide an
insecure solution (p < 0.05)”

● “...given 89 scenarios, about 40% of
the computer programs made with the
help of Copilot had potentially
exploitable vulnerabilities.”

● “participants provided access to an AI
assistant were more likely to believe
that they wrote secure code than
those without access to the AI
assistant”

Can’t the Models Just Generate Secure Code?

Custom Code

Libraries

Frameworks

Runtime

User input
comes into
the system

It reaches a place it
shouldn’t

● Codebases are way, way too big to fit
into a context window. And most of
the data flow here isn’t even in your
code.

● Cramming all the code to embeddings
won’t substitute for complicated
reasoning available in the context.

● Models are easily confused by more
steps in a process and more
concurrent variables in play.

● Purpose-built software we’ve been
working on for 25 years can’t even do
this fast or accurately.

Secure Software Processes Are Very Manual

Source: PagerDuty

M
M

M

M M

M
M

M

M

The factory requires constant human
intervention:

● Triaging results from tools
● Fixing things tools find
● Ticket management
● CYA documentation
● Product tradeoffs

Across these disciplines:
● Risk management
● Software engineering
● Product management
● Compliance
● Security engineering

M

Limitations of Our Security Programs Today
Not Enough Humans
● Developers outnumber security 100:1

(my experience is this is drastically
worse, the bigger the company)

The Humans We Have Aren’t Cross-Skilled
● Security personnel many times don’t

have hands-on coding skills to pitch in
directly or review

● Developers don’t have good security
skills to efficiently and accurately triage

Reality
● AppSec typically runs many activities

only on the most critical applications
(internet facing w/ sensitive assets)

Sources: Sonatype

What Can Scale With The Robots?

Solution: Paved Roads
Strategy: Make It Hard To Be Insecure

“Netflix engineering invests in the concept of an Infrastructure
and Security Paved Road. This provides well-integrated, secure
by default central platforms to engineers at Netflix so they can
focus on delivering their core business value”

Requirements
● Strong DevEx / platform teams
● Fewer technology stacks
● Developer Security champions

Help in this area
● Resourcely (vendor)
● BridgeCrew (vendor)
● Spinnaker (OSS tool)

Sources: Netflix

Common
Pipeline

#1

Common
Use Case

#1

Automatically
enforces

authentication

Forces
security static

analysis on
every build

Common
Use Case

#2

Forces you to
provide roles for

access control
enforcement

Common
Use Case

#3

Only allows
REST+JSON to
prevent XSS

Solution: Better Runtime Protection (with RASP)

Help in this space:
● Contrast Security (vendor)
● DataDog (vendor)
● Imperva (vendor)
● AppDynamics (vendor)

Strategy: Make It Hard To Exploit Your Insecure Code

“Traditional security measures are not equipped to deliver
protection in the cloud, which means that organizations must
craft a new strategy and adopt new tooling, including
application-level policies, tools, technologies and rules — chief
among them RASP.”

Sources: Contrast Security, Crowdstrike

Solution: Security Tool Copilot
Strategy: Eliminate Human Interruptions for Security Tools

The highest spend in secure development is also the one that
has the hardest skill to find – triaging and fixing security tool
results.

Help in this space:
● Pixee (vendor - me)
● Corgea (vendor)
● renovate (vendor)
● dependabot/renovatebot

(vendor)
● Codemodder (OSS library)

1. Scanner
finds

something

2. Security
Copilot triages
and proposes

the fix

3. Scanner
finds nothing
after merge

Codemodder: A modern, OSS codemod library

https://codemodder.io/
https://github.com/pixee/codemodder-python
https://github.com/pixee/codemodder-java
https://github.com/pixee/cli

class SecureRandom(SemgrepCodemod):
 NAME = "secure-random"
 REVIEW_GUIDANCE = ReviewGuidance.MERGE_WITHOUT_REVIEW
 DESCRIPTION = "Replaces random.{func} with more secure secrets library functions."

 @classmethod
 def rule(cls):
 return """
 rules:
 - patterns:
 - pattern: random.$F(...)
 - pattern-inside: |
 import random
 ...
 """

 def on_result_found(self, original_node, updated_node):
 self.remove_unused_import(original_node)
 self.add_needed_import("secrets")
 return self.update_call_target(updated_node, "secrets.SystemRandom()")

A codemod library focused on orchestrating great tools together.

Tools That Are
Great at Querying
Code

Tools That Are
Great at Changing
Code

Codemodder

Thank You!

@nahsra

arshan@pixee.ai

https://pixee.ai

https://github.com/apps/pixeebot

