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What Are Distributed Applications?

- Software systems that run on multiple computers (nodes)
- Work together to appear as a single cohesive system

- Nodes communicate over a network (e.g., internet or intranet)
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Key Principles

- Scalability

- Availability & Reliability
- Fault Tolerance

- Maintainability

- Security



Architectural Patterns

- Microservices
- Event-Driven Architecture
- CORS

- Service Mesh



7 Microservices
Architecture

Decoupling into services
Benefits: Scalability, Flexibility

Challenges: Complexity, Data
Consistency



Event-Driven Architecture

e Asynchronous communication
e Benefits: Loose coupling

e Challenges: Event consistency



CQRS Pattern

- Command Query Responsibility
Segregation

- Optimized reads/writes

- Challenges: Complexity, eventual
consistency



Service Mesh

- Service Discovery & Load Balancing
- Benefits: Enhanced reliability

- Tools: Istio, Linkerd



Common Challenges

Network latency and failures

Data consistency (CAP theorem)

Service discovery complexity

Distributed transactions and eventual consistency

Security across distributed components



Scalabillity Strategies

Horizontal Scaling (adding more nodes)
Vertical Scaling (adding more resources)
Stateless vs. Stateful designs

Load balancing strategies (Round-robin, Least-
connections, Geo-based)



Ensuring Reliablility & Fault Tolerance

Redundancy and replication
Failover strategies
Circuit breakers and retry logic

Monitoring and alerting (observability)



Best Practices

Design for Failure
Use Stateless Components

Embrace Automation: CI/CD and Infrastructure as
Code

Implement comprehensive Observability (Logging,
Monitoring, Tracing)

Practice Fault Tolerance

Prioritize Security

Leverage Load Balancing & Service Discovery
Implement Event-driven Communication
Apply Domain-Driven Design (DDD)

Adopt Chaos Engineering practices



Case Study

- Real-world example
- Challenges & solutions

- Lessons learned



Real-Life Example of Distributed Applications

- Case study of Netflix's microservices
architecture.

- How Amazon handles massive traffic
with distributed systems.

- Spotify's use of event-driven
architecture for seamless user
experience.



Netflix Case Study: Microservices in Action

- Netflix pioneered the use of microservices
architecture.

- Challenges included managing data
consistency and service
interdependencies.

- Implemented automated testing and
continuous deployment to maintain
quality.

- Leveraged chaos engineering to improve
system resilience and fault tolerance.

- Results include improved scalability and
user experience.



Emerging Trends

Serverless computing
Edge computing

AlOps



Ssummary & Key Takeaways

* Right architecture choice
* Proactive challenge management
« Continuous refinement

* Invest in strong monitoring and observabillity tools



Q&A

- Questions & Answers



Thank you
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