Designing Robust and Scalable
Distributed Applications

Architectural Patterns Challenges and Best Practices



Agenda

Introduction to Distributed Applications
Architectural Patterns

Common Challenges

Best Practices & Solutions

Case Study

Summary & Takeaways

Q&A



/’

e What is a Distributed App<

Introduction to
DlS.tnbL?ted < e Examples: Netflix, Amazon,
Applications oty

e Importance




What Are Distributed Applications?

- Software systems that run on multiple computers (nodes)
- Work together to appear as a single cohesive system

- Nodes communicate over a network (e.g., internet or intranet)



S

Key Principles

- Scalability

- Availability & Reliability
- Fault Tolerance

- Maintainability

- Security



Architectural Patterns

- Microservices
- Event-Driven Architecture
- CORS

- Service Mesh



7 Microservices
Architecture

Decoupling into services
Benefits: Scalability, Flexibility

Challenges: Complexity, Data
Consistency



Event-Driven Architecture

e Asynchronous communication
e Benefits: Loose coupling

e Challenges: Event consistency



CQRS Pattern

- Command Query Responsibility
Segregation

- Optimized reads/writes

- Challenges: Complexity, eventual
consistency



Service Mesh

- Service Discovery & Load Balancing
- Benefits: Enhanced reliability

- Tools: Istio, Linkerd



Common Challenges

Network latency and failures

Data consistency (CAP theorem)

Service discovery complexity

Distributed transactions and eventual consistency

Security across distributed components



Scalabillity Strategies

Horizontal Scaling (adding more nodes)
Vertical Scaling (adding more resources)
Stateless vs. Stateful designs

Load balancing strategies (Round-robin, Least-
connections, Geo-based)



Ensuring Reliablility & Fault Tolerance

Redundancy and replication
Failover strategies
Circuit breakers and retry logic

Monitoring and alerting (observability)



Best Practices

Design for Failure
Use Stateless Components

Embrace Automation: CI/CD and Infrastructure as
Code

Implement comprehensive Observability (Logging,
Monitoring, Tracing)

Practice Fault Tolerance

Prioritize Security

Leverage Load Balancing & Service Discovery
Implement Event-driven Communication
Apply Domain-Driven Design (DDD)

Adopt Chaos Engineering practices



Case Study

- Real-world example
- Challenges & solutions

- Lessons learned



Real-Life Example of Distributed Applications

- Case study of Netflix's microservices
architecture.

- How Amazon handles massive traffic
with distributed systems.

- Spotify's use of event-driven
architecture for seamless user
experience.



Netflix Case Study: Microservices in Action

- Netflix pioneered the use of microservices
architecture.

- Challenges included managing data
consistency and service
interdependencies.

- Implemented automated testing and
continuous deployment to maintain
quality.

- Leveraged chaos engineering to improve
system resilience and fault tolerance.

- Results include improved scalability and
user experience.



Emerging Trends

Serverless computing
Edge computing

AlOps



Ssummary & Key Takeaways

* Right architecture choice
* Proactive challenge management
« Continuous refinement

* Invest in strong monitoring and observabillity tools



Q&A

- Questions & Answers



Thank you




	Slide 1: Designing Robust and Scalable Distributed Applications
	Slide 2: Agenda
	Slide 3: Introduction to Distributed Applications
	Slide 4: What Are Distributed Applications? 
	Slide 5: Key Principles
	Slide 6: Architectural Patterns
	Slide 7: Microservices Architecture
	Slide 8: Event-Driven Architecture
	Slide 9: CQRS Pattern
	Slide 10: Service Mesh
	Slide 11: Common Challenges
	Slide 12: Scalability Strategies
	Slide 13: Ensuring Reliability & Fault Tolerance
	Slide 14: Best Practices
	Slide 15: Case Study
	Slide 16: Real-Life Example of Distributed Applications
	Slide 17: Netflix Case Study: Microservices in Action
	Slide 18: Emerging Trends
	Slide 19: Summary & Key Takeaways
	Slide 20: Q&A
	Slide 21: Thank you

