
Serverless Workflow
Orchestration on AWS

I am Bharat Vishal Tiwary
SDE II @Amazon

LinkedIn: bharattiwary

Hello!

2

Article:
https://www.techtimes.com/articles/308145/20241105/techniques-tools-orchestrating-workflows-using-microservices.htm

Serverless Workflow
Orchestration on AWS

“

By orchestrating services, businesses can unlock
agility, quickly adapt to changing customer needs,
and deliver innovative solutions faster than ever

before.

4

Today’s Agenda

◉ Concepts
◉ Orchestration in AWS
◉ Best practices

5

Concepts
What’s Serverless Workflow Orchestration?

1

6

Serverless
Build and run applications without thinking about

servers.

7

What & Why Serverless?

◉ Serverless computing is a cloud computing execution model where the
cloud provider dynamically manages all server resources.

◉ Physical servers are still used, but they are abstracted away from
developers .

◉ Main value proposition is of focusing on business outcomes while
abstracting away the mechanics of computing

◉ Benefits include: Pay-per-use, Automatic scaling, Reduced operation and
infrastructure cost, Faster time to market

8

AWS Serverless services

9
Source: https://docs.aws.amazon.com/serverless/latest/devguide/serverless-core-services.html

Workflow
A workflow is a sequence of tasks that are part of a

larger process or goal.

10

What is a Workflow?

◉ A workflow is a series of actions that accomplish a particular task, serving
as a fundamental unit of work

◉ Workflows are designed to simplify and automate tasks by combining
multiple actions into a coherent sequence .

◉ In various contexts, workflows serve different purposes

11

Microservices
Software is composed of small independent

services that communicate over well-defined APIs.

12

What are Microservices?

◉ A software architectural approach that structures applications as a
collection of small, independent services that communicate over
well-defined APIs

◉ Each service runs in its own process and focuses on doing one thing well,
making them simple and granular

◉ Key Characteristics: Autonomous operation, Technology diversity,
Independent Databases

◉ Teams can operate independently using the "You build it, you run it"
DevOps model

13

Orchestration
● A central service acts as a brain

to coordinate logic.

Orchestration vs Choreography

Choreography
● Each service acts

autonomously, also known as
Event Driven Design (EDD)

14

Event Broker

Orchestration
● Explicit and managed by the

orchestrator.
● Direct communication via the

orchestrator.
● Simpler for defining workflows,

more complex orchestration.
● Centralized error handling.
● Less flexible due to central

control.

Orchestration vs Choreography

Choreography
● Implicit and managed by

individual services.
● Event-based, peer-to-peer

communication.
● More complex interactions,

simpler service autonomy.
● Distributed error handling.
● Highly flexible and adaptable.

15

Orchestration use case

● IT service requests
● Compliance
● Invoice processing
● Employee

onboarding/offboarding.
● Software deployment

16

Orchestration in AWS
AWS Step Functions

2

17

Top Orchestration tools

Apache Airflow

Apache Airflow is an open-source
tool for scheduling and monitoring
workflows. Developed by Airbnb, it
uses directed acyclic graphs (DAGs)
to manage complex data pipelines
effectively.

AWS Step Functions

AWS Step Functions is a serverless
orchestration service that lets you
combine AWS services to build to
scalable, distributed applications
using state machines.

Google Workflows

Google Workflows is a powerful
orchestration service from Google
Cloud that automates tasks across
Google services, boosting
productivity and efficiency!

18

Microsoft Power Automate

Previously known as Microsoft
Flow, this tool is a crucial
component of the Microsoft
ecosystem designed to assist
businesses in automating
workflows and enhancing
productivity across various
applications and services.

Dagster

Dagster is an open-source data
orchestrator that helps build,
run, and monitor data pipelines.
It provides a productive
environment for data engineers
and scientists to define, test, and
execute data workflows
efficiently.

Argo

Argo is an open-source workflow
engine for orchestrating parallel jobs
on Kubernetes. It effectively manages
complex dependencies and features
advanced scheduling capabilities,
making it ideal for large-scale
distributed environments.

Why Step functions?

◉ Low Code / No Code: AWS step function workflows can be created using
the workflow studio which is easy to use for non coders.

◉ Highly Scalable:This solution can easily scale to meet the demands of
enterprise-level applications and workflows.

◉ Reliability: Built on the dependable infrastructure of AWS, it provides high
availability and fault tolerance for orchestrated workflows.

◉ Flexibility: Developers can create workflow logic using familiar
programming patterns and seamlessly integrate it with various AWS tools
and services.

◉ Cost-Effective: By Carefully choosing the type of Statefunction Workflow it
can be pretty cost effective

◉ Developers can use CDK for deployment, and the system includes linting
tools and CloudFormation validation before deployment ..

19

AWS Step Functions

● create workflows to build distributed
applications, automate processes,
orchestrate microservices, and create
data and machine learning pipelines.

● Key Concepts: Executions, Tasks, Activities
● In the Step Functions' console, you can

visualize, edit, and debug your
application’s workflow. You can examine
the state of each step in your workflow to
make sure that your application runs in
order and as expected.

20

Components of Workflow

Request Response Choose tasks Retry Tasks

21

Add Human in Loop Process Data in Parallel Dynamically Process with Map

Workflow Studio

Developing Step function

Amazon State Language

22

AWS Step Functions: Use case

● Orchestrate Microservices: allowing break down
of complex applications into smaller,
independent services that can be developed,
tested, and deployed independently.

● Data processing: Step Functions can be used to
process large volumes of data or perform tasks
that need to be run periodically.

● Machine Learning: Step Functions can be used to
build and manage data pipelines, allowing you to
move data between different sources and
destinations in a reliable and scalable manner.

● Event-driven architectures: Step Functions can
be used to build event-driven architectures

23

Best Practices
3.1 Design for Scale and Performance

3

24

Standard

● Can run upto 1 year
● Exactly once execution
● Charged on number of state

transitions
● Better suited for non

idempotent, long running
workflows.

3.1.1 Standard vs Express Workflows

Express

● Limited to 5 minutes max
● At least once

execution(async) , At most
once (sync)

● $1 for per million executions
● High volume processing

workloads

25

Or Both?

● Standard workflows can act as
parent workflows to invoke
Express workflows synchronously

● Combines the strengths of both
workflow types

● Reliable workflows while
maintaining cost efficiency and
performance optimization

26

3.1.2 Right Service Integration

◉ Consider Lambda for for large number of tasks that can be processed
concurrently

◉ All Lambda functions in Step Functions must be designed to be idempotent
◉ Lambda function names should not be specified explicitly
◉ Version control is crucial for both Lambdas and Step Function definitions
◉ For DynamoDB interactions, use Optimistic

Locking/Transactions/Conditional Write to handle race conditions .

27

3.1.3 Beware of Timeouts

◉ Amazon States Language doesn't specify timeouts for state machine
definitions

◉ For callback with a task token (.waitForTaskToken), use heartbeats and add
the HeartbeatSeconds field in Task state definition.

28

3.1.4 Retries & Error Handling

◉ Exceptions should be categorized into RetryableException (like SQS
dependency exceptions) and NonRetryableException (like
NullPointerException) to simplify the step function graph

◉ When configuring dependencies, always set timeout and retry policies,
especially when connecting to other services like CloudWatch .

◉ Proactively handle transient lambda exceptions in your state machine to
Retry invoking your Lambda function, or to Catch the error.

29

3.1.5 Monitor & Optimize

Use the AWS CloudWatch service to monitor the performance of your Step
Functions workflows. This will help you to identify any bottlenecks or issues that
may be impacting performance and allow you to take corrective action as
needed.

30

Best Practices
3.2 Security Best Practices

3

31

● Use IAM roles for tasks
● Encrypt sensitive data
● Use CloudTrail to monitor Step Functions
● Use resource-level permissions
● Enable CloudWatch logging

3.2 Security Best Practices

32

Best Practices
3.3 Operation Excellence Best Practices

3

33

3.3.1 Passing Large Loads

● Amazon S3 ARNs instead of
passing large payloads in Step
Functions

34

Key Metrics:

● State Transitions
● Throttled State Transitions
● Execution Duration
● Throttled Execution Starts
● Task Failures

3.3.2 CloudWatch For Monitoring

35

Best Practices
3.4 Reliability Best Practices

3

36

● Handle timeouts gracefully
● Beware of event history quota
● Use retries and error handling
● Use Idempotent tasks
● Use Cloudwatch Alarms
● Use CloudTrail logging
● Test your workflows

3.4 Reliability Best Practices

37

Best Practices
3.4 Cost Optimization Best Practices

3

38

● Standard vs Express Workflows
● Monitor and Optimize usage
● Use Tagging for Cost Allocation

3.4 Cost Optimization Best Practices

39

You can find me @
◉ LinkedIn: bharattiwary
◉ bharatbvt@gmail.com

Thanks!

40

mailto:bharatbvt@gmail.com

