Architecting Al-Native
Platforms

Engineering Scalable ML
Infrastructure for Modern
Applications

As organizations accelerate Al adoption with a significant majority of
enterprises now running Al workloads in production, platform engineers
face unprecedented challenges in building infrastructure that can
reliably support machine learning at scale.

By: Bharath Reddy Baddam

Traditional infrastructure patterns, designed for stateless web

The Infrastructure Imperative

applications and predictable resource consumption, prove
insufficient when confronted with the unique demands of

machine learning workloads:
GPU-intensive training jobs

Memory-hungry model inference

Complex dependencies between data pipelines and
model deployment

The stakes are considerable:

Competitive Advantage

Organizations with successful Al-native platforms gain
faster model deployment cycles and improved
operational efficiency

Experimental Trap

Those struggling with Al infrastructure often find their Al
initiatives trapped in experimental phases

Understanding Al Workload Characteristics

Training Workloads
Bursty resource consumption
patterns

Significant GPU memory and
compute power for short periods

Often requires multiple GPUs
working in coordination

Network topology critical for
performance

Inference Workloads
Individual requests may require
modest resources

Aggregate demand can be
substantial

Unpredictable scaling patterns
with demand spikes

Strict latency requirements for
real-time responses

Data Pipelines

Handle batch processing of
historical data
(terabytes/petabytes)

Require real-time data
processing capabilities

Must maintain consistency and
reliability

Data quality directly impacts
model performance

Infrastructure Patterns for Scalable Model Training

Resource Management Challenges

e Resource isolation for multi-tenant environments
e Ephemeral nature of training workloads
e Distributed training coordination

e Storage architecture balancing performance, capacity,

and cost
A A v,
Container Isolation Network Topology Fault Tolerance
Provide isolation for conflicting High-bandwidth, low-latency Automatic checkpoint management

dependencies and CUDA versions connections between training nodes and job restart capabilities

Container Orchestration for Mixed CPU/GPU

GPU Resource Management

Specialized device plugins and
schedulers that understand

accelerator hardware characteristics

GPUs typically cannot be shared
between containers

Requires scheduling algorithms to

avoid resource fragmentation

Must handle GPU memory
requirements and CUDA
compatibility

Environments

Node Heterogeneity

Clusters often contain multiple node

types optimized for different
workloads

e CPU-only nodes for inference
e GPU-dense nodes for training

e Node labeling, taints, and

tolerations for workload
placement

Custom Resources &
Operators

Extend Kubernetes capabilities to
handle Al-specific workflows

Training operators for distributed
jobs

Inference operators for advanced
deployment

Resource quotas and limits for Al
workloads

ModeTaining

Inference

Data Flow

Al Model

Data Pipeline Architectures

Feature Store Stream Processing

Architecture
Enable real-time feature

Centralized repositories for engineering and model inference:
engineered features that can be

Handle high-throughput data

shared across multiple models _ _
ingestion

and applications:
e Support complex event

genératlon and real-time e Provide stateful computations
serving for advanced feature

e Implement versioning and - -
Model Training engineering

Li tracki
Ineage tracking e Implement fault tolerance to

Inference ;
experiments

Effective data pipelines must handle both batch processing for training
and real-time processing for inference, often simultaneously within the
same platform.

4 | mccy |
‘,numdl‘

DaealYaoore 1£2.80

Fj)
(-~ Al Model

@

/Monitoring

£ \ [a F '
Dak D Scoore e D&ta Snore infrastriuctire Health

233033 - 24.C3

DE333 b

it a2 DE.EA3 2

A

- ? Tty
¥ |
'\Ill_”I“Il LI|I'||"EI| ki A e T "o rn- il II| IIIII IIII
— J

Observability and
Monitoring for Al
Applications

Model Performance Monitoring

Specialized metrics including prediction accuracy, confidence
scores, and drift detection that account for the statistical nature
of Al systems

Data Drift Detection

Systems that monitor statistical properties of input data,
comparing current distributions to baseline training data to
identify when models need retraining

Infrastructure Observability

Enhanced monitoring of GPU utilization, memory consumption,
and inter-node communication patterns specific to Al workloads

Alerting Strategies

Statistical approaches to identify significant performance
degradations while filtering out normal variation in model

performance

Heployml

Platform Automation for Self-
Service ML Deployment

GitOps for ML Progressive
Deployment Deployment Strategies
Version control for model Reduce risk while enabling rapid
artifacts, configuration files, and iteration:

deployment specifications

enables: Canary deployments

Blue-green deployments
e Declarative deployment

Feature flags
workflows

« Review and approval Must account for model-specific

processes characteristics:
e Clear interfaces for model e Warmup times
handoff

¢ Memory requirements
e Auditability and rollback

capabilities

e Prediction consistency

Caword! Bpritral-—22 -

Alpha insights

ok heag LR L L1FT] iray br]

Iaae g (¥] [y
B e .
O B wre D e
ol 7 1938482 -

Real-World Implementation
Patterns

High-Frequency Trading

Process market data and execute decisions within
microseconds

N
|_ e Co-location of compute and data
e Elimination of serialization overhead

e Custom Kubernetes schedulers for dedicated resources

Content Recommendation

Serve personalized models to millions of users simultaneously

Multi-tier caching strategies

[

Edge deployment patterns
e A/B testing frameworks

e Feature stores for real-time user behavior

Healthcare Al

Satisfy stringent privacy requirements and regulatory
compliance
EHB e Detailed logging of all processing
e Explainable Al capabilities
e Specialized deployment pipelines with validation

Data governance frameworks

Performance Optimization and Resource

Management
GPU Memory Optimization Model Serving Optimization
Critical for Al workload performance: Reduce inference latency while maximizing throughput:

Gradient accumulation for large batch training Model quantization

Model sharding for distributed inference

Dynamic batching

Dynamic memory allocation

Caching strategies

Memory profiling tools

Hardware-specific optimizations (TensorRT, etc.)

g ar:)

Network Optimization Storage Performance Auto-scaling Strategies
High-bandwidth technologies Parallel file systems, NVMe arrays, Custom metrics and policies
(InfiniBand, RDMA) and topology- and data locality optimization reflecting actual workload

aware scheduling requirements

Security and Governance in
Al Platforms

Model Security Data Privacy
e Protection of intellectual o Differential privacy
property techniques
e Prevention of adversarial e Federated learning
attacks architectures
e Model encryption and e Privacy-preserving
secure serving techniques throughout the

e Adversarial detection Al lifecycle

systems

Access Control

e Fine-grained role-based access

e APl authentication and authorization

e Audit trails and compliance monitoring

Security considerations for Al platforms extend beyond traditional
application security to encompass model protection, data privacy, and
algorithmic accountability.

A

Future Trends in Al Infrastructure

Edge Al Deployment
Shifting toward distributed Al processing:

Reduces latency and bandwidth requirements
Improves privacy and reliability

Requires handling resource constraints and intermittent
connectivity

Enables federated learning across edge devices

e &

Quantum Computing Neuromorphic Computing
Hybrid classical-quantum architectures for specific Al Processors mimicking biological neural networks for lower
algorithms power consumption
|@|
Automated ML Explainable Al
Platforms automating model selection and Frameworks providing transparency into model decision-

hyperparameter optimization making processes

Building the Foundation for
Al-Driven Innovation

The transformation of platform Organizations that successfully
engineering to support Al-native navigate this transformation
applications represents one of the create competitive advantages

most significant infrastructure through:

challenges of our time. Success

Faster innovation cycles
requires a fundamental rethinking Y

of traditional approaches to: e Improved operational

efficiency

Resource management
: 9 e Ability to scale Al initiatives
e Deployment strategies across business units

e Operational practices

The foundation laid today determines an organization's ability to
capitalize on future Al innovations. The architectural decisions made now
will determine which organizations lead this transformation.

Key Takeaways

Understand Al Workload Characteristics
ML workloads exhibit fundamentally different

characteristics compared to traditional applications,

requiring reconsideration of basic infrastructure
assumptions.

Balance Innovation with Governance

Create self-service platforms that democratize Al

deployment while maintaining security, compliance,

and operational standards.

Implement Specialized Resource
Management

Design container orchestration, data pipelines, and
observability systems specifically for the unique
demands of Al workloads.

Prepare for Emerging Technologies

Build flexible foundations that can adapt to edge Al,
quantum integration, and other emerging trends in the
rapidly evolving Al landscape.

Thank You

