
Supply Chain Defense by Default
SBOMs, SLSA, and Provenance in CI/CD — a practical guide to making secure delivery pipelines the default, not 

the exception.

Bhaskar Bharat Sawant
Senior IEEE Member

Southeastern Michigan Section (SEM) Section

Lead engineer & Senior .NET Developer



The Problem: Supply Chain Attacks

Traditional Security Concerns

• Web application vulnerabilities

• Server misconfigurations

• Insider threats

Modern Attack Vectors

• Open-source libraries

• Package registries

• Build servers

• CI/CD runners

• Artifact repositories



Why This Matters Now

Recent high-profile incidents underscore the critical importance of supply chain security.

Incident What Happened Impact

SolarWinds Build environment hacked 18,000 companies compromised

Log4j Vulnerable dependency triggered 

global response

Weeks of emergency patching

XZ Backdoor (2024) Trusted maintainer account 

compromised to inject backdoor

Nearly entered Linux distros globally

Trust Is Not Assured

Years of usage don't guarantee 

dependency safety

Pipelines Are Targets

Build systems are strategic entry 

points

Automation ≠ Transparency

Automated processes need 

verification



What Supply Chain Defense by Default Means

Defense by default integrates security directly into CI/CD systems, making them the policy engine and gatekeeper, rather 

than relying on manual checks.

Automated

Security checks run automatically on 

every build.

Enforced

Policies are consistently applied across 

all pipelines.

Observable

All security decisions are logged and 

auditable.

Repeatable

Consistent inputs yield consistent 

security outcomes.



Software Bill of Materials (SBOM)
An SBOM is the ingredient list of your software, providing transparency into components, versions, and origins.

Why SBOMs Matter

• Rapid vulnerability response

• Efficient component identification

• Regulatory compliance & transparency

Every Build

SBOM generated automatically

Every Artifact

Matching SBOM attached

Every Deployment

Stored with metadata



Provenance & Attestations

Provenance answers critical questions about artifact origin: Who built this? How was it built? Where was it built? With 

what inputs? Attestations are the signed proofs that the build followed expected processes.

Eliminates Shadow 
Builds

No unauthorized or 

undocumented build processes

Prevents Arbitrary 
Pipelines

Human-triggered builds must 

follow standards

Blocks Unverified 
Artifacts

No deployment without proof of 

trusted origin

If the artifact cannot prove it came from your trusted pipeline, then it should not be allowed to deploy.



SLSA Framework
SLSA (Supply Chain Levels for Software Artifacts) provides an incremental maturity 

roadmap for secure software delivery.

SLSA Level 1

Build steps tracked and logged

SLSA Level 2

Build is scripted and version-controlled

SLSA Level 3

Provenance and signing enforced

SLSA Level 4

Hermetic and reproducible builds



Pipeline Security Controls
A hardened CI/CD pipeline implements multiple layers of security controls that work together to ensure security is enforced by 

the system, not by people.

Keyless Signing

Prevents private key theft by eliminating long-lived 

credentials

Ephemeral Build Runners

Short-lived runners limit lateral movement and reduce 

attack surface

Immutable Artifact Storage

Ensures artifacts cannot be modified after creation

Deploy-Time Verification

Ensures only authorized components reach production



Hermetic & Reproducible Builds

Hermetic Builds

• No network access during build

• Dependencies pre-fetched, pinned, verified

• Build has no external side effects

Reproducible Builds

• Same input always produces same output

• Bit-for-bit identical artifacts

• Verifiable by independent parties

Prevents Dependency 
Hijacking

Pre-verified dependencies can't 

be swapped during build

Stops Supply Chain 
Poisoning

No external influence during 

artifact creation

Blocks Build-Time 
Tampering

Sealed environment prevents 

interference

Hermetic builds turn your pipeline into a sealed factory rather than an open workshop.



Dependency Hygiene
Security teams often focus on vulnerabilities, but the real danger is: "Where did this dependency actually come from?" Treating dependencies with the 

same rigor as production code is essential.

1

Use Dependency Allowlists

Maintain approved registries and sources

2

Pin Every Version

Exact versions, not ranges or latest tags

3

Scan Before Adoption

All new additions validated before use

4

Rotate Maintainers

Distribute trust across multiple reviewers

5

Treat Updates as Change 
Management

Dependency updates require review and 

approval

Automation is helpful — but automated updates must never bypass validation.



Real-World Example: Before vs. After

A team lacked artifact verification in their Kubernetes deployments. Implementing supply chain defense transformed their security posture.

Before Implementation

• Manual local rebuilds

• Unsigned artifacts in registry

• No SBOM, no vulnerability insight

• 5 days to locate Log4j impacts

Risk: Malicious builds deployed unnoticed

After Implementation

• Keyless signing enforced by CI

• Auto-generated SBOM with image

• Admission controller required provenance

• SBOM in security dashboard

Impact: XZ-style alerts identified in minutes

5
Days Before

Time to locate vulnerable services

<5
Minutes After

Time to identify impacted systems

0%
Velocity Impact

No deployment slowdown

We did not slow deployment. We made it safer — by default.



Deployment Enforcement

Automated security enforcement at deployment is critical, ensuring requirements are met where risk is highest.

1

Provenance Check

Valid provenance

2

Attestation Verification

Valid attestations

3

Signature Validation

Signature verified

✗ No Provenance

Deployment blocked automatically

✗ Invalid Attestation

Deployment blocked automatically

✗ Failed Signature

Deployment blocked automatically

Automated enforcement is the only scalable security.



30–60 Day Implementation Roadmap
Here's a practical roadmap to evolve delivery without disruption.

Weeks 1–2

SBOM + artifact metadata storage

Outcome: Visibility

Weeks 3–4

Provenance signing + verification in 

staging

Outcome: Traceability

Weeks 5–8

Enforce signature verification in 

production

Outcome: Trusted delivery



The Cultural Shift
Supply chain security is not just a tooling problem — it’s a mindset shift.

From: Trusting 
Pipelines

To: Proving Trust

From: Hoping for 
Safety

To: Knowing Shipments

From: Security 
Slowdown

To: Security Speed-Up

Transformation occurs when all teams view supply chain defense as a shared advantage, not an obstacle.



Key Takeaways

Software supply chain: a cybersecurity battlefield

Attackers target build systems & dependencies.

Secure software by securing its build systems

Pipeline security = application security.

SBOMs, provenance, attestation, SLSA, & 
verification are practical

Implementable solutions, not future ideas.

Security shouldn't rely on heroics. It must be the default outcome of how 

we build.



Thank you


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

