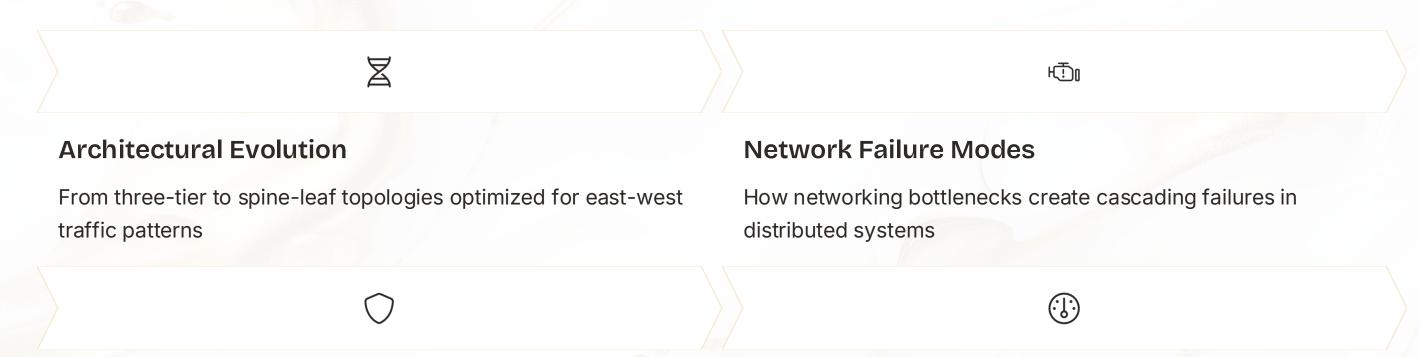
Building Resilient Network Infrastructure for Modern Platform Engineering

From Legacy Systems to AI-Scale Architecture

BHASKARARAO VAKAMULLU

Anna University India

Today's Reality: Your Network Defines Your Platform's Potential


Platform engineering teams face unprecedented challenges architecting systems that must scale from web applications to Al workloads.

While typical web applications connect to 2-4 backend services, Al-powered platforms orchestrate communication between 128-256+ distributed nodes, each with sub-10ms latency requirements.

Your network is either your platform's superpower or its Achilles' heel.

Agenda

Fault Tolerance

Implementing designs that maintain service availability during infrastructure changes

Network Observability

Strategies to identify performance issues before they impact end users

Through real-world case studies, we'll demonstrate how thoughtful network architecture decisions enable platforms to scale from gigabytes to petabytes of daily data transfer.

The Evolution of Network Architecture

Traditional Three-Tier

Core, distribution, and access layers designed primarily for north-south traffic patterns

Optimized for client-server applications with predictable traffic flows

Software-Defined

Network virtualization with programmable control plane

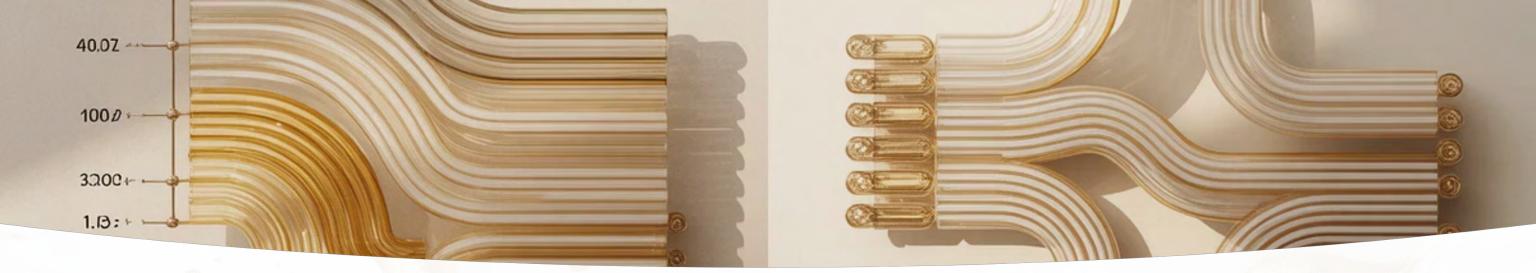
Dynamic reconfiguration based on application demands

2

Spine-Leaf

Flattened architecture with any-to-any connectivity

Better suited for east-west traffic between services and microservices


AI-Scale Architecture

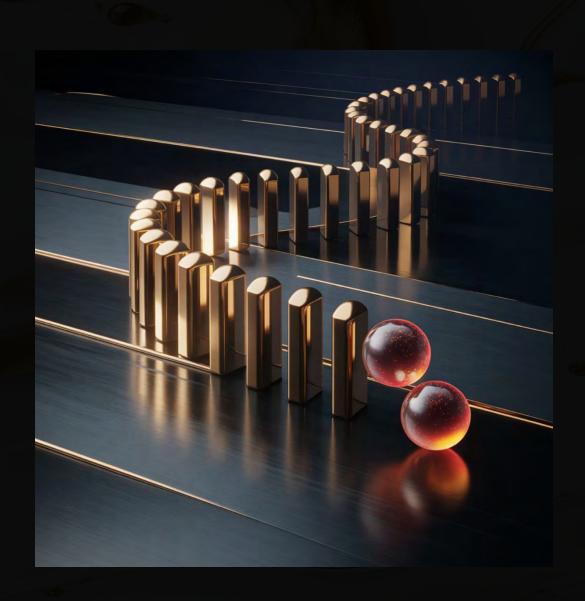
4

Ultra-low latency fabrics with specialized ASICs

Optimized for massive parallel processing requirements

Each evolution addresses the increasing demand for higher bandwidth, lower latency, and greater flexibility as applications become more distributed.

Traditional vs. Modern Network Requirements


Web Application Requirements

- 2-4 backend service connections
- Bandwidth: 10-100 Mbps per user
- Latency tolerance: 50-100ms
- North-south traffic dominates
- Predictable usage patterns

Al Platform Requirements

- 128-256+ distributed node connections
- Bandwidth: 400 Gbps-1.6 Tbps between nodes
- Latency requirements: sub-10ms
- East-west traffic dominates (80%+)
- Bursty, unpredictable workloads

Case Study: Cascading Network Failure

Financial Services AI Platform

Initial symptom: Intermittent API timeouts during peak load

Root cause: TCP incast congestion when multiple distributed training nodes responded simultaneously to parameter server

Cascade effect: Buffer overflows \rightarrow packet drops \rightarrow TCP retransmissions \rightarrow increased latency \rightarrow more timeouts \rightarrow complete service degradation

Resolution: Implemented RDMA over Converged Ethernet (RoCE) with Priority Flow Control (PFC) to prevent congestion collapse

Network Bottlenecks: The Hidden Performance Killers

Buffer Bloat

Excessive buffering increases latency while masking underlying congestion problems, particularly devastating for real-time Al inferencing

Topology Constraints

Oversubscription ratios that worked for web applications (20:1) fail catastrophically for AI workloads requiring near 1:1 ratios

Packet Processing Limits

Traditional networking gear struggles with the 3.2 billion packets per second demands of modern Al workloads

Bandwidth Saturation

ML training workloads can saturate 100Gbps links in seconds, creating contention that stalls distributed processing

The impact of these bottlenecks compounds in distributed systems, where the slowest component dictates overall performance.

Fault-Tolerant Network Design Principles

Fundamental Requirements

Redundant Everything

Dual network fabrics with no single points of failure

Graceful Degradation

Systems that maintain partial functionality rather than complete failure

Isolated Failure Domains

Containing faults to prevent system-wide impacts

Implementation Strategies

Equal-Cost Multi-Path (ECMP)

Load balancing across multiple network paths

Bidirectional Forwarding Detection (BFD)

Sub-second failure detection and rerouting

Segment Routing

Source-based routing for traffic engineering and fast reroute

These principles ensure your platform maintains service availability during infrastructure changes and unexpected failures.

Modern Spine-Leaf Architecture for AI Workloads

Key Benefits

•

- Predictable latency with fixed hop count (typically 3 hops max)
- Linear scalability by adding leaf or spine switches as needed
- Optimized for east-west traffic patterns dominant in distributed Al
- No spanning tree protocol limitations

Critical Design Considerations

2

- Oversubscription ratio: Target 3:1 or lower for Al workloads
- ECMP path diversity for congestion avoidance
- Buffer sizing to accommodate microburst traffic
- Consider RDMA support for ultra-low latency requirements

Network Observability: Finding Problems Before Users Do

Telemetry Collection

- High-resolution metrics (1s intervals)
- Flow data with packet sampling
- Interface counters and queue depths
- Advanced: In-band Network
 Telemetry (INT)

Key Performance Indicators

- Latency distributions (p50, p95, p99)
- Microbursts and buffer utilization
- TCP retransmissions and drops
- Path congestion and imbalance

Analysis Techniques

- Network digital twin for "what-if" analysis
- Anomaly detection with machine learning
- Historical baseline comparison
- Network topology visualization

The Hidden Costs of Network Latency in AI/ML Pipelines

32%

Training Efficiency Loss

Distributed training synchronization overhead due to network latency

82ms

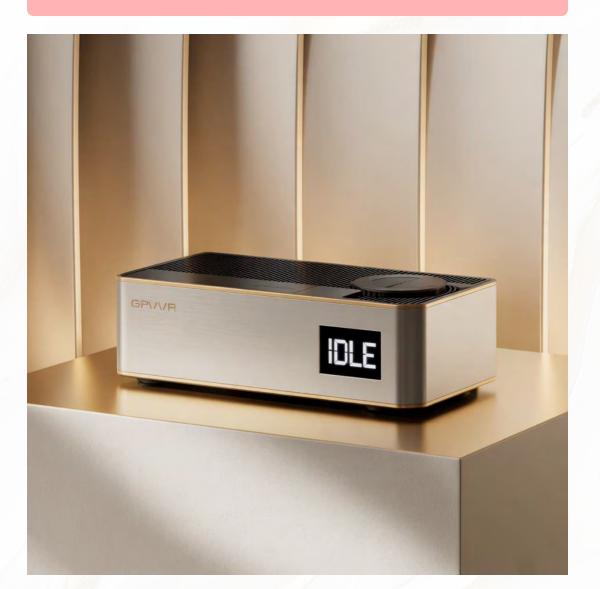
Inference Latency

Network contribution to end-user perceived model response time

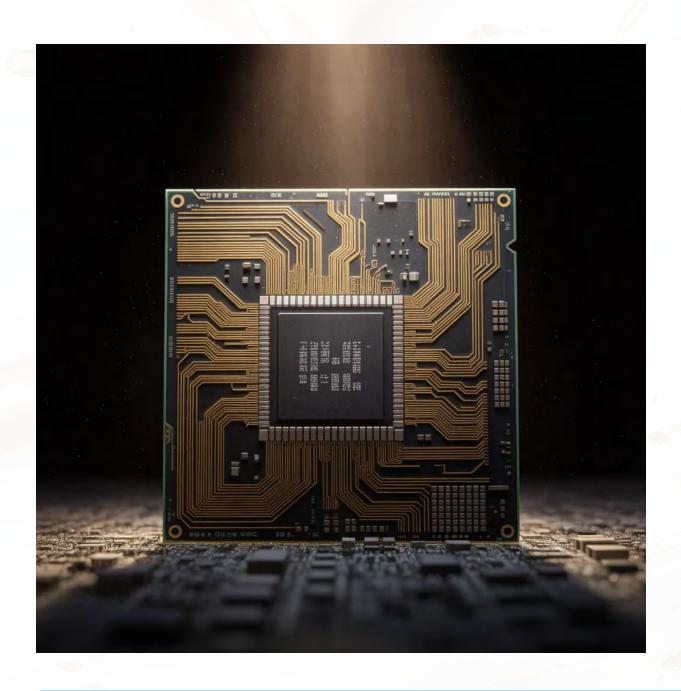
2.5x

Cost Multiplier

Increased infrastructure costs from extended training times


47%

Wasted GPU Time


Percentage of GPU cycles spent waiting for data transfer

Critical Impact

Every 1ms of network latency can translate to minutes of additional training time for large models, directly impacting both time-to-market and infrastructure costs.

Modern ASICs: Enabling 3.2+ Billion Packets Per Second

Next-Generation Network Processing

Traditional switches processed ~1.2 billion packets per second, insufficient for AI workloads that generate 3-4x that volume.

Modern ASICs deliver:

- Programmable pipelines for custom protocols
- Hardware-accelerated RDMA/RoCE support
- Sub-microsecond forwarding latency
- Deep buffers (up to 100GB) for handling microbursts
- Advanced congestion management algorithms

① The latest switches from Nvidia, Broadcom, and Intel feature silicon designed specifically for AI/ML traffic patterns, with specialized support for collective operations like AllReduce.

Case Study: E-commerce Platform Transformation

Legacy Environment

Traditional three-tier network with 10Gbps links

7-9 second page loads during peak events

90% north-south traffic pattern

AI Implementation

Personalization engines required 100Gbps links

GPU clusters needed specialized networking

East-west traffic reached 85%

1

2

3

4

Microservices Transition

Network became bottleneck as traffic patterns shifted

East-west traffic increased to 60%

Latency spikes during service discovery

Modern Architecture

Spine-leaf with 400Gbps backbone

Software-defined networking with dynamic provisioning

98.5% reduction in network-related incidents

This transformation enabled the platform to scale from handling gigabytes to petabytes of daily data transfer while improving reliability and performance.

Key Takeaways: Building for the Future

Architect for Change

Design networks that can evolve with workload demands, incorporating software-defined principles for dynamic reconfiguration

Prioritize Resilience

Build fault-tolerant infrastructure with no single points of failure and graceful degradation capabilities

Invest in Observability

Implement comprehensive network telemetry that provides visibility into performance before it impacts users

Optimize for Latency

Recognize that in Al workloads, network performance directly impacts computational efficiency and overall system costs

Your network infrastructure is no longer just a connection medium—it's a critical platform capability that will either enable or constrain your organization's digital transformation.