
Birol Yildiz

Manage Alert
Overload with AIOps

Dec 5th, 2024
Speaker: CEO & Co-founder Birol Yildiz

CONF42 DEVSECOPS 2024



Reduce MTTR & MTTA
Increase Productivity 
Reduce Costs

Trusted by:

About ilert
Alerting - On-call Management - Status Pages

DevOps & SRE
IT Ops IOT 
MSPs ITSM

Used by:

Used to:



High MTTR & MTTA
Decreased Efficiency 
Increased Stress

Let’s start with the why:
Why do we need to effectively manage alert overload?



First results after two weeks - 93% less alert volume



Across the Stages of Incident Response Lifecycle

AIOps



Using AI Assistants
for On-call Scheduling

AI across the stages of incident response lifecycle

Prepare Respond Communicate Learn

Enhancing Incident
Communication with AI

Leveraging AI for
Postmortem Analysis

Manage Alert
Overload with AIOps 



 RESPOND

Alert Grouping in ilert



Identify alerts that
refer to the same issue. 

Consolidate them
into a single alert.1 2 Reduce noise 

Prevent burnout

Alert Deduplication Process

Using Embeddings Similarity Search for Deduplication
We will work with an approach based on vector embeddings and the use of pre-trained models. To begin,
we'll explore the necessary concepts for this method.

 RESPOND



 RESPOND

Vector Embeddings

A mathematical representation of data in a high-dimensional space, where each point (or
vector) represents a specific piece of data, such as a word, sentence, or an entire document. 

When you use ChatGPT, for example, your prompts are transformed into a series of numbers first (a
vector). Similarly, we will transform alerts into vectors using an embedding model.

These embeddings capture the semantic relationships between data points, meaning that
similar items are placed closer together in the vector space.



 RESPOND

Embedding Model

A type of machine learning
model that learns to
represent complex data,
such as words, sentences,
images, or graphs, as dense
vectors of real numbers in a
lower-dimensional space. 

// Input
"A sentence like this will be transformed into a series of (thousands) numbers" 

// Output 
[
 -0.006929283495992422,
 -0.005336422007530928,
 -4.547132266452536e-05,
 -0.024047505110502243,
 ... // thousands more numbers
]



 RESPOND

OK, but how can we use this for alert deduplication?

Step 1: Preprocessing Alerts

Step 2: Vectorization / Generating Text Embeddings

Step 3: Deduplication Logic

Step 4: Feedback Loop

We will transform alerts into vector
embeddings using a text embedding
model. By comparing these vectors,
we identify and deduplicate alerts
that are semantically similar, even if
they do not match exactly on a
textual level.



 RESPOND

Step 1: Preprocessing Alerts

Standardize the format of incoming alerts
to ensure consistency. If you’re using an
alerting system like ilert, which sits on top
of multiple alert sources and observability
tools, alerts are already normalized into a
common format.

CleaningNormalization

Remove irrelevant information or noise from alerts,
such as timestamps. 
Use plain text and avoid markdown or JSON. This will
not only reduce the number of tokens used, but will
also exclude that the format will account for
deduplication.



 RESPOND

Step 2: Vectorization / Generating Text Embeddings

Choose an appropriate text embeddings
model that can convert alert messages into
numerical vectors. Models like BERT,
OpenAI’s text embeddings, or Sentence-
BERT (specially designed for sentence
embeddings) can be suitable.

VectorizationText Embeddings Model Selection

Each incoming alert is transformed into a vector
using the selected model and stored in a vector
database. Models trained on large datasets, including
natural language text, can capture a wide range of
semantic meanings, making them suitable for
encoding the information contained in alerts.



 RESPOND

Step 3: Deduplication Logic

A threshold is set to determine when two alerts are considered duplicates. If the similarity score between an
incoming alert and any existing alert exceeds this threshold, the alerts are considered duplicates.

Threshold Setting

When two alerts are identified as duplicates, they are consolidated into a single alert record, with a counter to
indicate the number of duplicate alerts received.

Deduplication and Clustering

Use a GenAI model to generate concise summaries for clusters of duplicate alerts. This step can aggregate the key
information from multiple alerts into a single, easily digestible notification. 

Optional Summary Generation



 RESPOND

Step 4: Feedback Loop

Semantic Understanding
Flexibility
Scalability

ConsiderationsAdvantages

Model Selection
Threshold Tuning
Continuous Learning



SCAN ME

Grab a copy of our AI & Incident Management Guide!

Questions?


