
No Kafka, No JVM:
Shaping the future of
real-time data pipeline

Bobur Umurzokov
Developer Advocate at GlassFlow | Ex-
Dev Lead at Microsoft | Microsoft MVP

Connect on
LinkedIn

Bob Dreamer
Data Engineer at mid-sized DreamTogether company.

Experience
3+ years at different scale companies.

Education
BS in Computer Science.

Skills
Python, Spark, AWS.

Learning
AI, Streaming tools and technologies

*Not open to work

Fuel TypeID Model Mileage

1486862539 BMW petrol
ID: 123
Model: BMW
Fuel Type: petrol
Mileage: 148686
Suggested Price: 20 000 USD

I will build an AI-powered
streaming data pipeline...

Okay, we are curious
about the outcome...

Real-time data ingestion
Stream processing

Transformation
Aggregation

Filtering
Enrichment

Run ML models

Applications

Real-time data streaming pipeline

Relational
Databases

Data streams

Analytics and BI
tools

Data Driven Apps

Data Warehouse

Data Source Data Sink

Solution

OpenAI API

Prediction
Service

Challenges with the solution

He does not have experience with Kafka.

He does not want to deal with the infrastructure.

He does not have enough time to learn Kubernetes.

He wants to implement everything in pure Python.

He wants multiple data engineers can work on one data pipeline space.

Predict service should also notify the web/mobile app in real-time.

Google and ChatGPT can
not help me

I will ask my real friends..

“Our data
engineers are

dependent on our
backend devs to
make changes in

Java.”

“I hated hiring
people just to

manage Kafka.”

Kafka users were telling him stories

“It took us 9
months to

implement Kafka."

Self-managing Kafka presents several challenges

What team is responsible for Kafka?

What is the correct configuration?

How do you deploy changes to ec2/k8s/machine?

How should you upgrade the brokers?

How do you monitor?

How can you train developers to manage Kafka and its configuration?

Should you implement 1 cluster for a company or a few clusters?

Managed Kafka Providers

Data teams want self-sufficiency in Python

TOP 10 COMMON
DATA ENGINEERS
AND SCIENTISTS PAIN
POINTS IN 2024

Scan Me

Kafka Alternatives

Stream processing frameworks in Python

Stream processing frameworks in Python

Why use the Python
framework for data

streaming?

Why use Python framework for data streaming?

No JVM, no wrappers, no orchestrator, no server-side engine.

They can be used out-of-the-box with any existing Python library.

Unifies the streaming data platform and stream processor components.

You install them without a complex initial setup.

Your original data stays where it is.

They do real-time incremental in-memory transformation.

You can run your local code right from Jupyter Notebook.

They offer serverless platforms.

What is GlassFlow?

Google Pub/Sub Amazon SQS

Mobile apps Backend apps

Event-Driven Apps

Mobile apps Backend apps

Real-time Apps

A fully managed serverless
streaming data pipeline in minutes

CLI Web App

Operational Databases
Cloud Storages

Snowflake Google BigQuery

Messaging Brokers

Azure Event Hub Amazon Kinesis

Data Streaming Services

Data Warehouses

ClickHouse Chroma DB

Search & Analytical Databases

Source
Connectors

Sink
Connectors

Zero-infrastructure
transformations

Code first development
in Python

Amazon S3 Azure Blob Storage
PostgreSQL MongoDB

Zero infrastructure data
transformations

Real-time

Casual Python
style

Built-in message
broker

Build data streaming pipelines within minutes

Connect live data sources using the GlassFlow Python SDK or built-in integrations1.

2. Create a pipeline using GlassFlow WebApp or CLI

3. Implement a transformation function in Python

5. Consume processed data using the GlassFlow Python SDK or built-in integrations

4. Transform your data in real-time in the serverless execution engiine

Built using robust technologies

Bring me examples for
real-world scenarios.

Real-time clickstream analytics

Real-time classified ads enrichment

Continuously update the vector database

Azure
Machine Learning

Amazon
SageMaker

OpenAi MLFlow

Real-time anomaly detection

Explore use cases

Scan Me

Solution 2: Real-time price recommendation

Tools we use

GlassFlow WebApp - to create a pipeline in a low-code

interface.

OpenAI - to predict car prices.

Supabase - to store registered cars for selling/buying.

Project code on GitHub

Scan Me

That's it, you
enabled your data

pipeline from day 1.

O, yeah! Thanks for
help!

When they want to:

What do people typically use GlassFlow for?

Improve latency

Reduce cloud computing costs

Integrate with real-time
data sources

Improve data team
collaboration

Enable event-driven
architecture

Transform billions of
records efficiently

Summary

What Bob needed

Stream processing
frameworks in Python

Bob's wants

Data engineers want self-
sufficiency in Python

Bob's used

Serverless stream
processing pipeline

Bob's challenges

Data engineers face
problems with JVM-based
real-time processing tools
nowadays

Thank You

Bobur Umurzokov
@BoburUmurzokov

@Boburmirzo

Connect on
LinkedIn

