Superposition in Neural Network Representations

- bolu ben-adeola

Mechanistic Interpretability

1. Neural networks solve an increasing number of important tasks really well.

2. It would be at least interesting, and probably important to understand how.

3. Mechanistic Interpretability (Mech Interp) tackles this problem by seeking granular mechanistic explanations.

Neural Network Representations

Understanding what a model sees and how it does. I.e. what information have models found important to look for in their inputs and how is this information represented and propagated internally?

Neural Network Representations

Qualities of Representations

1. Decomposability

2. Linearity

3. Composed of features

Language Model Representations are:

Linearly Decomposable Into Features

Decomposability

Linearity

These discrete quality vectors are composed by a Sum to give the observed representation.

Linearity

Linguistic Regularities in Continuous Space Word Representations

Tomas Mikolov*, Wen-tau Yih, Geoffrey Zweig Microsoft Research Redmond, WA 98052

$$cars_r - car_r + apple_r pprox apples_r$$

https://aclanthology.org/N13-1090.pdf

Linearity

Linear Representations

wet

Linear Composition as a Compression Scheme

Linearity is great because it helps us narrow down to one compression algorithm in a very large function space.

This understanding aids diagnostics (and maybe even steering) in AI safety contexts.

Effectively, mind control

Demands of Linearity

But Linearity also has pretty stringent demands: As a compression scheme, it requires as many vector dimensions as the number of discrete qualities you want to encode.

Language Model Representations are:

Linearly Decomposable Into Features

The Linear Representation Puzzle

We have some evidence that LLMs represent inputs with linear combinations (of features.)

Lossless Linear combinations requires as many dimensions (neurons) as features.

Common experience suggests LLMs have more features than they have neurons.

(GPT2-Small has on the order of 100k+ Neurons, and probably encodes more features than that.)

Towards Monosemanticity: Decomposing Language Models With Dictionary Learning

Using a sparse autoencoder, we extract a large number of interpretable features from a one-layer transformer.

Browse A/1 Features →

Browse All Features →

AUTHORS	AFFILIATIONS	
Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn,	Anthropic	
Tom Conerly, Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell,		
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell,	PUBLISHED	
Nicholas Joseph, Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke,		
Tristan Hume, Shan Carter, Tom Henighan, Chris Olah	Oct 4, 2023	

* Core Contributor; Correspondence to colah@anthropic.com; Author contributions statement below.

https://transformer-circuits.pub/2023/monosemantic-features

The Superposition Hypothesis

The superposition hypothesis suggests that Neural Networks represent more features than they have neurons to by exploiting feature sparsity and relative feature importance.

Effectively it says networks trade off lossless compression for increased feature representation to achieve good performance on training tasks.

HYPOTHETICAL DISENTANGLED MODEL

Sparsity

A key reason why this works is sparsity. Although language and other representation tasks have a very large number of helpful features that would be worth representing, they don't all show up in any given input at the same time.

This means as sparsity increases, the interference costs of having more features than neurons drops off.

One sparsely activated Vector with little interference

Two activated Vectors being misinterpreted.

Recovering Features in Superposition

One-layer transformer

Sparse Overcomplete Autoencoder

https://transformer-circuits.pub/2023/monosemantic-features

Recovering the Disentangled Model

Feature Exploration

arch				in		Sort by		Underline Mode	
Go Case ser		sitive v Top examples v		$\fbox{Consistent Activation Heuristic \lor} \fbox{Feature Ablation \lor}$		Feature Ablation $$			
<u>#2281</u> DN	IA (lower ca	se) 😡							
AUTOINTERP. (SCORE = 0.891) The neuron fires primarily on DNA/RNA sequences, and secondarily on other biology/genetics related strings.		ACTIVATIONS (DENSITY = 0.0040%)				S 🕢 SUB	SUBSAMPLE INTERVAL 0		
		150				atootataacotto	cacagat	atoptataacottococanot	
		100				anggtataatgttgtgtaggt		cttcconatttttcact-	
		50				aaaacaacctoatt	tonat-		
NEURON ALIGNMENT			50	1 m			atccaaatctcate	00000	
Neuron Value % of L			0 2	4 6	8 10	12	cttcconatttttc	acct-	
310 +0.47 4.0%			Activation				anc:ctagacaatc	tee	C decagaegae caracaetta
227	+0.27	2.3%					at other the tto	tta	
+0.23 1.9%		NEGATIVE LOG	RITS 🕜	POSITIVE LOGITS	5 🕜	nanaaaccactooc	acet	SUBSAMPLE INTERVAL 1	
			she	-0.48	gtt	+0.49	agaaattatt KA	TS	TRAIN TOKEN MAX ACT = 10.82
CORRELATED NEURONS 💿		her	-0.42	gct	+0.48	agggerrare. KA	ateseast	ttccggcacctaaaaagggtt	
Neuron Pearson Corr. Cosine Sim.		herself	-0.42	atg	+0.47		gittati	tagtgaatt ttt ccacctc-	
#310	+0.03	+0.02	5	-0.37	cct	+0.46	accagacgatttata	acarda	taggactt gg cgttggt
#99	+0.02	+0.02	Her	-0.36	cc	+0.44	aaagttcctctc	8 *	a tggcgacttt gtttc
#24	+0.02	+0.01	She	-0.36	agt	+0.43	gggtatgcattgtt	cttttt	tgagctgggacatccat
			-"	-0.35	<u>gg</u>	+0.42	gcccggctgcgcca	gaaggt	
CORRELAT	CORRELATED B FEATURES		Clinton	-0.33	ct	+0.42	gcatattacgttaga	acacaa	

