

RELIABLE SYSTEMS BASED ON UNRELIABLE
NETWORKS

AGENDA

• Failure modes of distributed systems

• Service level agreements and objectives

• Defining quality aspects of availability &
reliability/resilience, and scalability

• Key infrastructure and software architecture
patterns

• Three examples from a simple set of
microservices through to a devops solution

• How to do this in GoLang

• Testing your system

• Summary and references

DESIGN PROCESS SKETCH FOR QUALITY
ATTRIBUTES

1. Start with a system diagram and business process to be
implemented

2. Identify quality goals (SLA), measurements taken in the system
for this business process, and failure modes (FMEA)

3. Plan specific design changes (as epics or tasks)

4. Implement infrastructure as code patterns and software
patterns across the system of applications

5. Test and validate quality goals are improved

6. Continuously monitor and run automated playbooks to recover
in production(operations team)

7. Iterate (RCA leads to more design…)

AVAILABILITY DEFINITION

WHAT IS AN SLA OR SLO?

• Service level agreement – typically a contractual document between service provider and
customer(s) on how the service will be operated and what happens if these quantitative
metrics are not met

• Service level objective – an organization-internal set of targets typically from an IT
organization or cloud operations team; these often contribute key elements to the SLA for
a SaaS product

• Not all systems need or have an SLA → this is business specific (more $$ or more risk
involved may require this)

• An example may combine availability and reliability measures with caveats:
• The customer should have an ability to submit DevOps jobs for 99.99% of the operating period
• The customer jobs should complete successfully or with identified error in 100% of submissions; the

identified error can be either customer inputs were invalid or required customer assets were not
available, so job terminated. If the system crashes for internal reasons, no charge will be made to
the customer. sa

m
ple

A SAMPLE RETAIL STORE UPTIME SLA

• The critical goal of the point-of-sale system is that a store is able to maintain 100% uptime in any situation
other than a catastrophic event. It is assumed that point-of-sale could not reasonably overcome a catastrophic
event to be able to keep the store taking, making and delivering customer's orders.

• The payment subsystem (applications talking to banks) has a target of 99.999% uptime for a given operational
period

• Key Definitions:
• Store Uptime - a store is defined as up and running if the store is able to take, make and deliver a customer’s order. The store

should not be delayed by any system for more than 1 minute taking, making or delivering an order to a customer. A store may
be in a connected or disconnected state and still take, make and deliver a customer's order.

• Disconnected Store - A store that cannot connect to the internet. The store is still able to take, make and deliver an order
received from any instore channel (phone order or walk in order). Online ordering channels would be unavailable to this store.
Menus, loyal customer discounts, and online ordering would be restored with eCommerce recovery

• Catastrophic Event - any disruption to business continuity in an manner that either could not be reasonably anticipated or that
is a disruption in scope that cannot be mitigated by the IT systems. An example would be more than one critical components in
store infrastructure failing at the same time (a non-redundant switch or both clusters). An example of a disruption in scope
beyond IT systems would be a total store power outage or physical damage to the store that prevents operation like a fire

LOOSE DEFINITION OF RESILIENCE

There is no quantitative definition of resilience, but generally, it is the
ability of a system to withstand and recover from failures, disruptions, or
threats, ensuring the availability, reliability, and performance of services
and quickly recover to ensure uninterrupted service delivery to end-
users.

1. Detect a failure has occurred

2. Report the failure (to an SRE or a dashboard)

3. Determine why it occurred or the scope of the failure

4. Adapt and recover

RELIABILITY

• Reliability measures the probability that a system,
product, or service’s actual behavior matches the
expected behavior (correct results for inputs over a
period of time – in other words, it does what it says (or
what we expect) it to do…
• No errors that cause crashes, no dependency issues that

cause crashes or partial results, we might allow for eventual
consistency (if delays cause the system to report outputs
later than normal)

• SRE and service managers in ITIL may report on:
• Mean Time to Failure (MTTF) = the average time a system or

component takes to fail for non-repairable systems (wear-
and-tear and hardware with lifecycle)

• Mean Time Between Failures (MTBF) = the average time
between failures for repairable systems (like software where
we have outages and RTO)

CALCULATING FOR A COMPLETE ENVIRONMENT

99.9%

100%

100%

98%
95%

99.9%

95%

99%
= ??%

FMEA HELPS BRAINSTORM ABOUT POSSIBLE
FAILURES

• A failure might happen if…
• A container cannot reach in-store devices… (switch down)
• A container cannot reach bank… (internet or payment gateway to that bank down)
• Configuration update or container maintenance at wrong time
• A container is actually down… (the service cannot restart or failover does not work)
• Hardware platform in-store is down
• Service is degraded by devices offline…
• (Cash drawer or printer issues)

• And we might reduce the likelihood of it happening by…
• Hardware redundancy… blue-green deployments…

• And we might reduce the impact if it happens by…

RETAIL FAILURES BY OSI LAYER
OSI Layer Generic

example(s)
Typical payment system failure scenario(s) How do we

detect?
Impact to
payment
availability

Avoidance Remediation

External client • NextGenSystem client cannot reach payment
system (or is restarted)

• Security JWT token invalid or security service
failure

• Payment requests not from NextGenSystem
client received

• No inbound
API calls

• None • Shared environment health
check with restart
mechanism

• NextGenSystem operations
runbook

• Client restart requires API
support to determine
transactions in flight (to
restart at appropriate
point)

7 (App) Out-of-sync or
overlapping
business
operations (e.g.,
HL7), race
conditions, logic
bug,
performance of
shared resources

• Different client completes payment than
originating client

• Split payments scenarios not adding up, order
past store limit (or tip)

• Payment requests out of order (finalize before
auth)

• No gateway is reachable, one gateway too
much traffic by business rule

• Primary gateway is no longer reachable (or
responding slowly)

• Device soft failure – appears to process
• Logic bugs (handle with top-level error handling

& alerting, retry)
• Internal performance degradation
• Multiple requests (same payment), badly

formed requests (missing info), invalid CC
number/PIN

• Fraudulent request (bad credit card number)
• Batch closed late (with too many transactions or

mismatched & cannot reconcile automatically)

• Multiple gateway providers
(circuit breaker on each,
plus failover URLs, plus
retry)

• Devices protected by
Polly/retry logic (should
add CB)

• Data loader values checked
for consistency/breaking
changes (LINT in JenkinsX) –
scripts to move between
versions of schema

• Incomplete transactions
caught through daily batch
operations

• Manual resolution process
required on complex batch
irreconciliation

• Critical bug fix (requiring
new development) –
redeploy via Octopus into
stores as new container

6
(Presentation)

JSON packets
mis-
formed/MIME,
API calls timeout,
SSL, firewall rules
blocking

• One gateway endpoint not reachable for
short/long duration of time (possibly with in-
flight transaction)

• One device not available for short/long duration
of time (possibly with in-flight transaction)

• Firewall rule misconfigured

• Store & forward pattern
(persisted checkpoint
locally in case of need to
restart)

• Multiple gateway URL’s
(round-robin strategy)

• Manual replay of
transactions (force SAF,
manually gate
resubmission of
transactions)

• Implement RTO or

OSI Layer Generic
example(s)

Typical payment system failure scenario(s) How do we
detect?

Impact to
payment
availability

Avoidance Remediation

Container
infrastructure

Container build
issue (wrong
.NET FX, missing
DLL, packaging
incompatibility
with base
container)

• Soft failure not caught by health check
• Misconfiguration (appsettings or DB settings)
• Expired passwords (database, gateway)
• Gateway certificates expired

• K8S health
check for
components
/DLLs,
connectivity)

• Global
dashboard

• Potentially
small time
to
redeploy
(failover
time)

• Round-robin to next
available container
endpoint

• Restart container
(automatic or manual)

Compute
infrastructure

Hardware error
(bad drive), or
hardware out of
performance
spec (memory,
CPU, disk space)

• Error in deployed hardware
• Resources not available (at limit) – CPU,

memory, disk such as logs/DB full
• Load balancer/ingress degraded
• Inability to deploy in-store environment (bad

helm chart, connectivity to CD resources)

• Initiated
failover to
backup

• Recreate
payments
in flight
RPO

• Availability
impact for
failover
time
(outage)

• Redundant hardware for
hosting K8S, database and
other containers

• Scale-out containers on
multiple LB’s

• Log-shipping database
transactions to DW

• Manually reprovision or
failover to cloud-hosted
environment

5 (Session) RPC’s, sockets,
stdout streams

• Change in container definition file, CI process • Logs not
available to
Splunk

4 (Transport) TCP/IP packets
out of order or
TLS failure/IPSec

• TLS configuration change with gateway provider

3 (Network) Routing or
general network
failure,
ICMP/ping

• Internal network not available between
containers (through bad config or other)

• Spanning tree or inability to failover routing
• Database not reachable

• Database protected by .NET
core best practice resiliency
methods in EFCore (need
Couchbase CB, retry)

2 (Data) Ethernet, WiFi
unavailable or
insecure

• Devices not reachable or do not authenticate or
have bad tokens for gateways

1 (Physical) Fiber cut to store
or natural
disaster (store
unavailable)

• Store connectivity not available or degraded
• Environmental factors (building intactness,

power, cooling, etc.)

HOW TO APPLY TECHNIQUES

• What techniques can I use to:
• Identify that a failure has occurred?

• Checkpoint my work so that I can rollback to a known state?

• Avoid the failure in the future?

• Retry the failed operation (in the case of transient faults)?

• Mitigate the failure (reduce or mask the failure’s impact)?

• Improve the recovery time (increase availability by moving the RTO as close after to the
failure as possible)?

• We will apply both infrastructure and software-based resiliency
techniques such as redundancy, detection, failover and isolation

KEY INFRASTRUCTURE PATTERNS

• Infrastructure patterns – either in deployment by terraform or helm charts, or by implementation with a managed service – can
provide high degrees of redundancy and recoverability of services and data

• Platform availability is almost always preferred to rolling your own.

• If the platform you’re building on has a pattern(s), select one which meets the solution availability goals

• Avoid mixing & matching patterns in a single application

1. Replicated/redundant subsystems (k8s replica
sets/HPA/VPA, multiple clusters either with sharding
customers or load-spreading in active-active) → horizontal
scaling is preferred, pair with backup/restore strategy

2. Active-passive, warm standby, pilot light especially for
persistence/databases with global DNS

3. Geode pattern

4. Rate limiting or throttling in infrastructure (e.g., at WAF)

5. Canary or synthetic transactions

6. Background data synchronization between instances

7. Redundant connections between cloud and on-prem
datacenters or endpoints

8. Automatic recovery

SOFTWARE ARCHITECTURE PATTERNS

• Design the service architecture around loosely coupled, versioned services so that we can deploy and update
parts of the system while it is running in production

• Beware of conflicts with database transaction methods and put transaction “close” to database

• Also think through idempotency – ability to retry operation with same effects – retrying a payment is not a
good thing, retrying a read operation is fine

• Plan for graceful degradation with specific patterns like:
1. (Cancel the operation and user gets to retry manually – always an option)
2. Standard error processing (try/catch everywhere to avoid panic)
3. Stateless services and load balancing (which leads to store and forward,

fail-fast, write to disk before calling next service in chain)
4. Backoff/retry (a “resilience layer”)
5. Circuit breaker, which pauses dependent services when the caller senses

the callee may be down and throttling
6. Monitoring services (health checks on a dashboard, OTEL)
7. Timeout
8. Asynchronous calls or queued work (which then gets to short & long

polling, and consistent error handling)
9. Compensating transactions for workflows
10. Bulkhead (fault isolation)
11. Load management (HPA, bursting to a new cluster)
12. Fallback

NETFLIX HYSTRIX AS A COMPLETE IMPLEMENTATION

• Came from Java to GoLang - https://github.com/Netflix/Hystrix/wiki/

https://github.com/Netflix/Hystrix/wiki/

MEASURING AND METRICS

• Availability can be simple success/failure metric

• A true OTEL metric might be complete processes per tenant

• Internal SLO measurements might include
• Latency of calls between services

• Number of requests into service

• Often we look to indicators like performance counters (CPU, disk, IOPS,
etc.) to determine “high-water marks”

A SIMPLE CONNECTED MICROSERVICE EXAMPLE

REST API #1

DB

Command line
(user workstation)

OPTIONAL REST API #21 2 3

RETAIL TO ECOMMERCE TO PAYMENT EXAMPLE

In Store Point of Sale
(redundant clusters and
network link)

eCommerce web site
(redundant datacenters)

1

5

Online order

Pre-auth transaction

Send order to store

3

Complete transaction (with tip)

Payment gateway
 or bank

In-store order
& order delivery

2

4

DEVOPS JOB RUNNER SYSTEM EXAMPLE

Command line
(user workstation)

REST API
- Enroll infra
- Submit job

Service Provider AWS AZ

Customer hosting provider
for the job’s target server

Customer datacenter

REST API
- Outpost operations

REST API
- Collect status and

job artifacts

Reporting application

Agent (or remote
targeting)

1

5

Online order

3

2
4

6

WHAT WE’RE DOING AT CHEF…

1. Global DNS routing to primary and failover EKS instances in AWS – the customer availability point, their DNS
for API access has an active-passive environment

2. API gateway availability – multiple load-balanced gateways, customer sharding to limit damage for cluster
failures (not yet geode), caching of AuthZ data, HPA/node-scaling inside and warm standby failover clusters

3. Internal infrastructure – using the built-in redundant services in AWS (DB, file/S3, message queues), with
continuous monitoring and OTEL metrics; implementing retries between internal and external services (CLI
can be manually retried, UI can be refreshed)

4. Agent resilience – timeouts on skills/jobs, retries for external deps (downloading plugins, remote server
jobs, etc.), circuit breaker for communicating regular status back to state endpoints (turning communication
back on by external signal), and a zero-trust “heartbeat” back to the APIs to check communication paths
continuously

5. Job requests and agent results are written to disk immediately at the API so that post-processing and
reporting can be offloaded

6. Monitoring by our operations team – on health checks, performance (Prometheus/Grafana), business
metrics of both our services and customer-responsible assets (agented plus configured like SSO)

7. Development team reviewing improvements and testing each release

EVALUATING SOFTWARE COMPONENTS IN
GOLANG
• Hystrix - https://github.com/afex/hystrix-go – wrapping methods with fallback behavior and timeouts as well as collecting statistics and load tests

• GoResilience (multiple) - https://github.com/slok/goresilience

• Go-resiliency - https://github.com/eapache/go-resiliency

• GoBreaker (circuit breaker) - https://github.com/sony/gobreaker/blob/master/README.md

• Circuit - https://github.com/cep21/circuit (recoverable panics)

• Rubyist CB - https://github.com/rubyist/circuitbreaker

• Heimdall - https://github.com/gojek/heimdall

• Failsafe-go - https://github.com/failsafe-go/failsafe-go

• HttpRetry (retry, backoff) - https://kdthedeveloper.medium.com/golang-http-retries-fbf7abacbe27

• GoRetryable (retries only) - https://github.com/hashicorp/go-retryablehttp

• Retry-Go - https://github.com/avast/retry-go

• Pester – retries and backoff - https://github.com/sethgrid/pester

• Circuit breaker - https://medium.com/@homayoonalimohammadi/circuitbreakers-in-go-d85f5297cb50

https://github.com/afex/hystrix-go
https://github.com/slok/goresilience
https://github.com/eapache/go-resiliency
https://github.com/sony/gobreaker/blob/master/README.md
https://github.com/cep21/circuit
https://github.com/rubyist/circuitbreaker
https://github.com/gojek/heimdall
https://github.com/failsafe-go/failsafe-go
https://kdthedeveloper.medium.com/golang-http-retries-fbf7abacbe27
https://github.com/hashicorp/go-retryablehttp
https://github.com/avast/retry-go
https://github.com/sethgrid/pester
https://medium.com/@homayoonalimohammadi/circuitbreakers-in-go-d85f5297cb50

TESTING SYSTEMS WITH REAL-WORLD
CONDITIONS

• Use a tool like Chaos Monkey -
https://netflix.github.io/chaosmonkey/ , fail-points, performance
test tool (like k6, gatling, playwright, selenium, postman) or even
manually turn off components to test your system's availability,
simulate real-world scenarios like server failures, network
outages, and high loads, and monitor your system's response
and recovery times.

• Given availability requirements like uptime and reliability
requirements like RTO and RPO or expected business process
timelines:
• Design tests for most likely failures contributing to an outage – based on

load, failed business transaction, dependent service not available,
complete datacenter down

• Run tests in pre-production with integration test suite
• Implement active monitoring with a dashboard of all production

instances (Prometheus, or other dashboard)
• Have a canary tenant or synthetic workflow to be constantly testing in

production (this is what Dynatrace and other tools can report on)
• Run your backup and restore components of business continuity on

each update
• Move lessons learned to SOP or runbooks and then to

automated/scripted solutions

Logo

Sample tests

https://netflix.github.io/chaosmonkey/
https://netflix.github.io/chaosmonkey/

REPORT ON THE SERVICE LEVEL AGREEMENT
(EVEN IF IT ’S ONLY INTERNAL)

• ITIL processes require collection of data, share with customers when robust

1. Service health checks

2. Performance counters (CPU utilization, k8s performance)

3. Availability (uptime, PagerDuty or similar public page for status – calculate outages observed from
incident management process)

4. Logging and OTEL metrics on “business operations” may be shared back with customers for audit
purposes* (see previous talk on OTEL)

• Define DR plans and practice failover

• Compare the availability and reliability implementation with the theoretical model

• Perform RCA on all outages of services, drive the action plan back into the service

SUMMARY

• Availability, scalability and reliability cannot be solved by software or
platform alone, it’s a combination of techniques

• Look out for examples in other systems, read the platform design
sections from your cloud supplier

• Go as deep as you need to meet the expectation or SLA
• Easy solutions win out, so if you can afford to drop operations and let the user

retry, do so! (no need for a complicated solution)

• Don’t guess at an SLA – test it before you advertise!

REFERENCES

• Polly Project - https://www.thepollyproject.org/ (.NET)

• Netflix Hystrix - https://github.com/afex/hystrix-go (original in Java
https://github.com/Netflix/Hystrix/wiki)

• Netflix Chaos Monkey - https://netflix.github.io/chaosmonkey/

• Azure Well-Architected - https://azure.microsoft.com/en-us/solutions/cloud-enablement/well-
architected

• AWS Well-Architected - https://aws.amazon.com/architecture/well-architected/

• Uber SRE role - https://www.uber.com/blog/site-reliability-engineering-talks-feb-2016/

• ITIL v4 - https://wiki.en.it-processmaps.com/index.php/ITIL_4

• Chef 360 Documentation – https://docs.chef.io/360/1.2/

https://www.thepollyproject.org/
https://github.com/afex/hystrix-go
https://github.com/Netflix/Hystrix/wiki
https://netflix.github.io/chaosmonkey/
https://azure.microsoft.com/en-us/solutions/cloud-enablement/well-architected
https://azure.microsoft.com/en-us/solutions/cloud-enablement/well-architected
https://aws.amazon.com/architecture/well-architected/
https://www.uber.com/blog/site-reliability-engineering-talks-feb-2016/
https://wiki.en.it-processmaps.com/index.php/ITIL_4
https://docs.chef.io/360/1.2/

THANK YOU

HT TPS://WWW.LINKEDIN.COM/IN/BRIANWLOOMIS/

https://www.linkedin.com/in/brianwloomis/

	Introduction
	Slide 1
	Slide 2: Reliable systems based on unreliable networks
	Slide 3: agenda

	Section 1
	Slide 4: Design process sketch for quality attributes
	Slide 5: Availability definition
	Slide 6: What is aN SLA or SLO?
	Slide 7: A Sample RETAIL store uptime sla
	Slide 8: Loose definition of resilience
	Slide 9: reliability
	Slide 10: Calculating for a complete environment
	Slide 11: FMEA helps Brainstorm about possible failures
	Slide 12: Retail failures by osi layer
	Slide 13

	techniques
	Slide 14: How to apply techniques
	Slide 15: Key infrastructure patterns
	Slide 16: software architecture patterns
	Slide 17: Netflix hystrix as a complete implementation
	Slide 18: Measuring and metrics

	examples
	Slide 19: A Simple connected microservice example
	Slide 20: Retail to ecommerce to payment example
	Slide 21: Devops Job runner system example
	Slide 22: What we’re doing at chef…

	GoLang components
	Slide 23: Evaluating software components in golang
	Slide 24: Testing systems with real-world conditions
	Slide 25: Report on the service level agreement (even if it’s only internal)

	Conclusion and references
	Slide 26: summary
	Slide 27: references
	Slide 28: THANK YOU https://www.linkedin.com/in/brianwloomis/

