
Glitches in the Matrix,
Or Taming Agent Chaos

Zach Wasserman - March 10, 2022

Conf42 Chaos Engineering 2022

Transform your OS into a virtual database.

• Developed at Facebook, now a project of the Linux Foundation.

• Open source (MIT License) - github.com/osquery/osquery

• Cross platform - macOS, Windows, Linux, BSD (limited).

• Read only - limited by design.

• Agent deployed across all endpoints (production, corporate, workstations)

for security, IT, or operations use cases.

Performant endpoint visibility

http://github.com/osquery/osquery

Deploy and manage osquery on 100,000+ devices.

• Open core (MIT/Proprietary License) - github.com/fleetdm/fleet

• Linux server + cross platform CLI tool (fleetctl).

• Two classes of client:

• Osquery agents - Retrieving configurations, sending collected data.

• API clients - Humans (or scripts) modifying configurations or retrieving

data.

Open source device management

http://github.com/fleetdm/fleet

Engineering Resilience

Engineering Resilience
Focus

• Identify areas of key risk, apply mitigations focused to those areas.

• Availability > Integrity > Cost (to some extent)

• Pareto Principle/Amdahl's law

• Focus on the greatest contributors to risk.

Osquery (Agent) Fleet (Server)

Production availability
+

Workstation usability
+

Monitoring integrity
+

Compute cost
=

High Risk

Monitoring availability
+

Monitoring latency
+

Monitoring integrity
+

Compute cost
=

Medium Risk

Osquery
Watchdog

• Dual process worker/watcher model.

• Osquery self-watches for CPU and memory utilization, terminating any query
that exceeds the set utilization limits, and blocking that query for 24 hours.

• Mitigates:

• Production availability.

• Workstation usability.

• Downside: Blocking queries reduces monitoring integrity.

Osquery
Linux cgroups

• Ask the kernel to maintain strict limits on the amount of CPU and memory
utilized by the osquery process.

• Mitigates:

• Production availability.

• Downside: Only compatible on Linux.

Query Performance Profiling

• Use tooling to estimate relative
performance of queries.

• Mitigates:

• Monitoring integrity

• Compute cost

Osquery

Query Performance Monitoring

• Record statistics for real life
query execution.

• Shown here with simplified
rendering in Fleet UI

• Mitigates:

• Monitoring integrity

• Compute cost

Osquery

Fleet
Common Service Practices

• Multiple Fleet server processes run behind a load balancer.

• MySQL/Redis dependencies clustered with failover.

• Utilize autoscaling for efficient infra sizing.

• Mitigates:

• Monitoring availability, latency, integrity

• Downside: Without proper sizing, can increase compute costs.

Fleet
Backpressure (Buffering)

• Buffer data on the clients (osquery) until the server is ready to ingest it.

• Requires coordination between client and server.

• Client buffers logs until the server confirms receiving them successfully.

• Mitigates:

• Monitoring integrity, compute costs

• Downside: (Possibly) increased latency, integrity compromised in extreme cases.

Engineering Resilience

Engineering Resilience
Self Managed

• Fleet's software (both agents and servers) is entirely self-managed by
customers.

• Self Managed Challenges:

• Environments are inconsistent.

• Deploys are slow (not in our control).

• Debugging feedback loop is slow.

Engineering Resilience
Consistency

• More heterogeneous deployments = more edge cases.

• MySQL... or MariaDB, Aurora, etc.

• Redis... Cluster, Sentinel, etc.

• Encourage deployment consistency.

• Infrastructure as code (Fleet Terraform).

• Reference Architectures (Fleet Reference architecture).

https://github.com/fleetdm/fleet/tree/main/tools/terraform
https://fleetdm.com/docs/deploying/reference-architectures

https://fleetdm.com/docs/deploying/reference-architectures

https://fleetdm.com/docs/deploying/reference-architectures

Engineering Resilience
Testing

• Automate, automate, automate.

• Metric: How many experiments can we run per week?

• More experiments = more chaos = more edge cases = more issues detected

• Infrastructure as Code comes into play here again.

• Easier to spin up and down and change parameters of test environments.

Engineering Resilience
Testing

• Generic HTTP testing tools may not cover your edge cases, and don't know the
production hot-paths.

• Build custom tooling!

• For Fleet, we created custom tooling to simulate osquery agents.

• Hot path: Agent check-ins, processing received data.

• Simulate agents efficiently (no need for a full osquery process, just pretend to
be a remote osquery).

https://github.com/fleetdm/fleet/blob/main/cmd/osquery-perf/mac10.14.6.tmpl

https://github.com/fleetdm/fleet/blob/main/cmd/osquery-perf/mac10.14.6.tmpl

Engineering Resilience
Debugging

• Debugging tooling plays a dual role with staging (load test) and production:

• Detect issues before they become incidents.

• Resolve incidents quicker.

• Collect first, ask questions later.

• fleetctl debug archive

https://fleetdm.com/docs/using-fleet/monitoring-fleet#generate-debug-archive-fleet-3-4-0

https://fleetdm.com/docs/using-fleet/monitoring-fleet#generate-debug-archive-fleet-3-4-0

Focus

Consistency

Testing Automation

Debug Tooling.

Thank you
zach@fleetdm.com

@thezachw
@zwass

We're hiring:
fleetdm.com/jobs

mailto:zach@fleetdm.com
http://fleetdm.com/jobs

