Zach Wasserman - March 10, 2022

o

Glitches in the Matrix,
Or Taming Agent Chaos

Conf42 Chaos Engineering 2022 " fleet

A ‘jé

H

<Y osquery

Transform your OS into a virtual database.

e Developed at Facebook, now a project of the Linux Foundation.

e Open source (MIT License) - github.com/osquery/osquery

e Cross platform - macOS, Windows, Linux, BSD (limited).
e Read only - limited by design.
e Agent deployed across all endpoints (production, corporate, workstations)

for security, |IT, or operations use cases.

http://github.com/osquery/osquery

fleet

Deploy and manage osquery on 100,000+ devices.

e Open core (MIT/Proprietary License) - github.com/fleetdm/fleet
e Linux server + cross platform CLI tool (fleetctl).
e [wo classes of client:
e Osquery agents - Retrieving configurations, sending collected data.
e API clients - Humans (or scripts) modifying configurations or retrieving

data.

http://github.com/fleetdm/fleet

Engineering Resilience

 fleet

Engineering Resilience

Focus

e ldentify areas of key risk, apply mitigations focused to those areas.
e Availability > Integrity > Cost (to some extent)
e Pareto Principle/Amdahl's law

e Focus on the greatest contributors to risk.

Osquery (Agent)

Production availability
|

Workstation usability
+
Monitoring integrity
+
Compute cost

High Risk

Fleet (Server)

Monitoring availability
|

Monitoring latency
+

Monitoring integrity
+
Compute cost

Medium Risk

Osquery
Watchdog

e Dual process worker/watcher model.

e Osquery self-watches for CPU and memory utilization, terminating any query
that exceeds the set utilization limits, and blocking that query for 24 hours.

e Mitigates:
e Production availability.
e \Workstation usability.

e Downside: Blocking queries reduces monitoring integrity.

Osquery

Linux cgroups

e Ask the kernel to maintain strict limits on the amount of CPU and memory
utilized by the osquery process.

e Mitigates:
e Production availability.

e Downside: Only compatible on Linux.

Osquery

Query Performance Profiling

e Use tooling to estimate relative
performance of queries.

e Mitigates:
e Monitoring integrity

e Compute cost

PN
. .
. y

Profiling query: select * from processes
U:1 C:0 M:2 F:0 D:0 processes (1/1): utilization: 9.8 cpu
0.099889228 memory: 18640896 fds: 4 duration: 0.5181262435

Profiling query: select * from users joln user_groups usin

groups using (gid)
U2 Cal M:2 F:(Di2 user _ groups (1/1) utilization:
28.299999999999997 cpu_time: 0.570734208 memory: 19369984

Profiling query: select * from time
U:0 C:0 M:2 F:0 D:0 twme (1/1): utilization: 5.35 cpu_time
0.056201881999999995 memory: 16080896 fds: 4 duration: 0.5

Osquery

Query Performance Monitoring

A“teams ;4 Advanced '

Schedule queries to run at regular intervals across all of your hosts.

e Record statistics for real life
guery execution.

Query Frequency Performance impact
. S h Own h e re Wi t h S i m I iﬁ ed Get syslog events 6 hours Minimal Action:
o o p Get USB devices 1 day Minimal Action:
re n d e r I n g I n F I eet U I Detect dynamic linker hijacking on Linux (MITRE. T1574.006) 1 week Minimal Action:
Get network interfaces 1 day Minimal Action:

o, o
. M I t I ga teS : Get installed Safari extensions 1 day Minimal Action:
Get disk encryption status 1 day Minimal Action:
‘ M O n itO r.i n g i n teg r it Detect machines with Gatekeeper disabled 1 day Minimal Action:
Y

Get installed Chrome Extensions 1 day Minimal Action:
Count Apple applications installed 1 day Minimal Action:

e Compute cost

Fleet

Common Service Practices

e Multiple Fleet server processes run behind a load balancer.
e MySQL/Redis dependencies clustered with failover.
e Utilize autoscaling for efficient infra sizing.
e Mitigates:
e Monitoring availability, latency, integrity

e Downside: Without proper sizing, can increase compute costs.

Fleet

Backpressure (Buffering)

e Buffer data on the clients (osquery) until the server is ready to ingest it.
e Requires coordination between client and server.
e Client buffers logs until the server confirms receiving them successfully.
e Mitigates:

e Monitoring integrity, compute costs

e Downside: (Possibly) increased latency, integrity compromised in extreme cases.

Engineering Resilience

 fleet

Engineering Resilience
Self Managed

e Fleet's software (both agents and servers) is entirely self-managed by
customers.

e Self Managed Challenges:
e Environments are inconsistent.
e Deploys are slow (not in our control).

e Debugging feedback loop is slow.

Engineering Resilience

Consistency

e More heterogeneous deployments = more edge cases.
e MySQL...or MariaDB, Aurora, etc.

e® Redis... Cluster, Sentinel, etc.

e Encourage deployment consistency.

e Infrastructure as code (Fleet Terraform).

e Reference Architectures (Fleet Reference architecture).

https://github.com/fleetdm/fleet/tree/main/tools/terraform
https://fleetdm.com/docs/deploying/reference-architectures

Up to 25000 hosts

Fleet instances

10 Fargate task

Dependencies
Redis

MySQL

Up to 150000 hosts

Fleet instances

30 Fargate task

Dependencies

Redis

MySQL

CPU Units

1024 CPU Units

Version Instance type

6 mo6g.large

5.7.mysql_aurora.2.10.0 db.rég.large

CPU Units

1024 CPU Units

Version Instance type
6 mog.large

5.7.mysql_aurora.2.1

db.m6g.8xlarge
0.0 SEREg

https://fleetdm.com/docs/deploying/reference-architectures

https://fleetdm.com/docs/deploying/reference-architectures

Engineering Resilience
Testing

e Automate, automate, automate.

e Metric: How many experiments can we run per week?

e More experiments = more chaos = more edge cases = more issues detected
e Infrastructure as Code comes into play here again.

e Easier to spin up and down and change parameters of test environments.

Engineering Resilience
Testing

e Generic HTTP testing tools may not cover your edge cases, and don't know the
production hot-paths.

e Build custom tooling!
e For Fleet, we created custom tooling to simulate osquery agents.
e Hot path: Agent check-ins, processing received data.

e Simulate agents efficiently (no need for a full osquery process, just pretend to
be aremote osquery).

},

"system_info": {
“"computer_name": "{{ .CachedString "hostname" }}",
"cpu_brand": "Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz\u@000\u0000\u0000\ud000\ud00o\ud0oo\uoo0o",
"cpu_logical_cores": "8",
“"cpu_physical_cores": "4",
"cpu_subtype": "Intel x86-64h Haswell",
“"cpu_type": "x86_64h",
"hardware_model": "MacBookProll,4",
"hardware_serial": "D@2R835DG8WK",
"hardware_vendor": "Apple Inc.",
"hardware_version": "1.0",
"hostname": "{{ .CachedString "hostname" }}",

"local_hostname": "{{ .CachedString "hostname" }}",
“physical_memory": "17179869184",
"uuid": "{{ .UUID }}"

},
"host_identifier": "{{ .CachedString "hostname" }}",
"platform_type": "16"

}

{{- end }}

https://qgithub.com/fleetdm/fleet/blob/main/cmd/osquery-perf/maci10.14.6.tmpl

https://github.com/fleetdm/fleet/blob/main/cmd/osquery-perf/mac10.14.6.tmpl

Engineering Resilience
Debugging

e Debugging tooling plays a dual role with staging (load test) and production:
e Detect issues before they become incidents.
e Resolve incidents quicker.

e Collect first, ask questions later.

e fleetctl debug archive

debug archive —--context preview

Ran allocs

Ran block

Ran cmdline

Ran errors

Ran goroutine

Ran heap

Ran mutex

Ran profile

Ran threadcreate

Ran trace

Failed db-locks: get /debug/db/locks received status 500
Failed db-i1nnodb-status: get /debug/db/innodb-status received status 500
Ran db-process-1list

o o

Archive written to fleet-profiles-archive-2022-0:

https://fleetdm.com/docs/using-fleet/monitoring-fleet#generate-debug-archive-fleet-3-4-0

https://fleetdm.com/docs/using-fleet/monitoring-fleet#generate-debug-archive-fleet-3-4-0

Focus

* fleet

Consistency

e ot

Testing Automation

 fleet

Debug Tooling.

 fleet

Thank you
zach@fleetdm.com

YW @thezachw
S (@zwass

We're hiring:
fleetdm.com/jobs

e ot

mailto:zach@fleetdm.com
http://fleetdm.com/jobs

