
Glitches in the Matrix,

Or Taming Agent Chaos

Zach Wasserman - March 10, 2022

Conf42 Chaos Engineering 2022



Transform your OS into a virtual database.

• Developed at Facebook, now a project of the Linux Foundation.


• Open source (MIT License) - github.com/osquery/osquery


• Cross platform - macOS, Windows, Linux, BSD (limited).


• Read only - limited by design.


• Agent deployed across all endpoints (production, corporate, workstations) 

for security, IT, or operations use cases.

Performant endpoint visibility

http://github.com/osquery/osquery


Deploy and manage osquery on 100,000+ devices.

• Open core (MIT/Proprietary License) - github.com/fleetdm/fleet


• Linux server + cross platform CLI tool (fleetctl).


• Two classes of client:


• Osquery agents - Retrieving configurations, sending collected data.


• API clients - Humans (or scripts) modifying configurations or retrieving 

data.

Open source device management

http://github.com/fleetdm/fleet


Engineering Resilience



Engineering Resilience
Focus

• Identify areas of key risk, apply mitigations focused to those areas.


• Availability > Integrity > Cost (to some extent)


• Pareto Principle/Amdahl's law


• Focus on the greatest contributors to risk.



Osquery (Agent) Fleet (Server)

Production availability

+


Workstation usability

+


Monitoring integrity

+


Compute cost

=


High Risk


Monitoring availability

+


Monitoring latency

+


Monitoring integrity

+


Compute cost

=


Medium Risk



Osquery
Watchdog

• Dual process worker/watcher model.


• Osquery self-watches for CPU and memory utilization, terminating any query 
that exceeds the set utilization limits, and blocking that query for 24 hours.


• Mitigates:


• Production availability.


• Workstation usability.


• Downside: Blocking queries reduces monitoring integrity.



Osquery
Linux cgroups

• Ask the kernel to maintain strict limits on the amount of CPU and memory 
utilized by the osquery process.


• Mitigates:


• Production availability.


• Downside: Only compatible on Linux.



Query Performance Profiling

• Use tooling to estimate relative 
performance of queries.


• Mitigates:


• Monitoring integrity


• Compute cost

Osquery



Query Performance Monitoring

• Record statistics for real life 
query execution.


• Shown here with simplified 
rendering in Fleet UI


• Mitigates:


• Monitoring integrity


• Compute cost

Osquery



Fleet
Common Service Practices

• Multiple Fleet server processes run behind a load balancer.


• MySQL/Redis dependencies clustered with failover.


• Utilize autoscaling for efficient infra sizing.


• Mitigates:


• Monitoring availability, latency, integrity


• Downside: Without proper sizing, can increase compute costs.



Fleet
Backpressure (Buffering)

• Buffer data on the clients (osquery) until the server is ready to ingest it.


• Requires coordination between client and server.


• Client buffers logs until the server confirms receiving them successfully.


• Mitigates:


• Monitoring integrity, compute costs


• Downside: (Possibly) increased latency, integrity compromised in extreme cases.



Engineering Resilience



Engineering Resilience
Self Managed

• Fleet's software (both agents and servers) is entirely self-managed by 
customers.


• Self Managed Challenges:


• Environments are inconsistent.


• Deploys are slow (not in our control).


• Debugging feedback loop is slow.



Engineering Resilience
Consistency

• More heterogeneous deployments = more edge cases.


• MySQL... or MariaDB, Aurora, etc.


• Redis... Cluster, Sentinel, etc.


• Encourage deployment consistency.


• Infrastructure as code (Fleet Terraform).


• Reference Architectures (Fleet Reference architecture).

https://github.com/fleetdm/fleet/tree/main/tools/terraform
https://fleetdm.com/docs/deploying/reference-architectures


https://fleetdm.com/docs/deploying/reference-architectures

https://fleetdm.com/docs/deploying/reference-architectures


Engineering Resilience
Testing

• Automate, automate, automate.


• Metric: How many experiments can we run per week?


• More experiments = more chaos = more edge cases = more issues detected


• Infrastructure as Code comes into play here again.


• Easier to spin up and down and change parameters of test environments.



Engineering Resilience
Testing

• Generic HTTP testing tools may not cover your edge cases, and don't know the 
production hot-paths.


• Build custom tooling!


• For Fleet, we created custom tooling to simulate osquery agents.


• Hot path: Agent check-ins, processing received data.


• Simulate agents efficiently (no need for a full osquery process, just pretend to 
be a remote osquery).



https://github.com/fleetdm/fleet/blob/main/cmd/osquery-perf/mac10.14.6.tmpl

https://github.com/fleetdm/fleet/blob/main/cmd/osquery-perf/mac10.14.6.tmpl


Engineering Resilience
Debugging

• Debugging tooling plays a dual role with staging (load test) and production:


• Detect issues before they become incidents.


• Resolve incidents quicker.


• Collect first, ask questions later.


• fleetctl debug archive



https://fleetdm.com/docs/using-fleet/monitoring-fleet#generate-debug-archive-fleet-3-4-0

https://fleetdm.com/docs/using-fleet/monitoring-fleet#generate-debug-archive-fleet-3-4-0


Focus



Consistency



Testing Automation



Debug Tooling.



Thank you

zach@fleetdm.com


@thezachw

@zwass


We're hiring: 

fleetdm.com/jobs

mailto:zach@fleetdm.com
http://fleetdm.com/jobs



