
Testing in Go
101

Francisco Daines
(Dino)

About Me

▣ Principal Sw. Engineer at Walmart Chile
▣ Experience in Java, C, Javascript
▣ Using Go since 2020
▣ Maintainer of Arch-go

2

fdaines

fdaines

fdaines@gmail.com

fdaines

Testing in Go: 101 - Conf24:Golang 2022

1.
A brief introduction to

Application Testing

3

Why is testing important?

4

The “no time for testing” death spiral
Kent Beck, Test-Driven Development: By Example

Infinite loop
More Stress => Less testing
Less testing => More errors (then stress)

Breaking the loop
● As testing reduces uncertainty then, if the

stress is increased, then improve tests to
reduce uncertainty and stress.

Testing in Go: 101 - Conf24:Golang 2022

“
Rather than apply minutes of suspect reasoning, we
can just ask the computer by making the change and

running the tests.

5

Kent Beck, Test-Driven Development: By Example

Testing in Go: 101 - Conf24:Golang 2022

Benefits of Application Testing

Reduces Bugs
If we continuously test
different use cases for
our code, then we can
find bugs and fix them
before publishing our

software artifacts

Improves Security
Testing different use

cases reduces
vulnerabilities of our

code

Increases Software Quality
Since we can catch some

bugs as part of our
development cycle, our

software products will be of
higher quality.

6 Testing in Go: 101 - Conf24:Golang 2022

The ones that really matters…

Saves Money
Increasing software quality reduces

production errors and debugging
time to find their causes, so that we
can focus our time in adding value

to business.

Improves Customer Satisfaction
Increasing deployment frequency and

releasing higher quality products should
improve our customers satisfaction and

loyalty.

7 Testing in Go: 101 - Conf24:Golang 2022

Different testing approaches

8 Testing in Go: 101 - Conf24:Golang 2022

The testing pyramid
Mike Cohn

The testing trophy
Kent C. Dodds

There is no rule of thumb to select the “right” testing approach

This talk is about unit testing, unless you select to follow a testing pyramid or trophy

2.
Test in Go - First steps

9

First Steps

Go testing tool
Is a standard tool to automates the

testing for desired packages.

Testing Package
Provides features to create unit

tests, benchmarks and fuzzy
tests.

In this talk, we’ll focus only on
unit tests.

10

> go test ./...
The example above will run tests for all

the nested packages

For more information:
> go help test

For more information:
https://pkg.go.dev/testing

Testing in Go: 101 - Conf24:Golang 2022

https://pkg.go.dev/testing

11

My very first test in Go

Testing in Go: 101 - Conf24:Golang 2022

12

How can I test multiple cases?

A (wrong) Approach

Most of the time we need to execute our functions using different input
values, and checking the returned values with the expected results.

Copy/Paste the test, changing
the input and expected values.
Code duplication is an issue we
never want to deal with.

func TestAddNumbersCase1(t *testing.T) {
 expected := 101
 got := AddNumbers(1,100)
 if got != expected {
 t.Errorf("Expected: %v, got: %v", expected, got)
 }
}

func TestAddNumbersCase2(t *testing.T) {
 expected := 0
 got := AddNumbers()
 if got != expected {
 t.Errorf("Expected: %v, got: %v", expected, got)
 }
}

Testing in Go: 101 - Conf24:Golang 2022

13

Table Driven Tests
The main idea is to define a table with input and expected results, then
execute the same test for each tuple in the table, avoiding code duplication.

Input Expected

1, 2, 3 6

1, 100 101

201, 403 604

111, 222, 333, 444 1110

(empty) 0

var addNumbersTestCases = []struct {
 numbers []int
 expected int
}{
 {[]int{1,2,3}, 6},
 {[]int{1,100}, 101},
 {[]int{201,403}, 604},
 {[]int{111,222,333,444}, 1110},
 {[]int{}, 0},
}

func TestAddNumbersTableDriven(t *testing.T) {
 for idx, test := range addNumbersTestCases {
 t.Run(fmt.Sprintf("Scenario %d", idx), func(t *testing.T) {
 got := AddNumbers(test.numbers...)
 if got != test.expected {
 t.Errorf("TestCase(%d). Expected: %v, got: %v", idx, test.expected, got)
 }
 })
 }
}

Testing in Go: 101 - Conf24:Golang 2022

14

Table Driven Tests

Testing in Go: 101 - Conf24:Golang 2022

15

Code Examples
Examples are code snippets that are displayed as package documentation and
also are verified by running them as tests.
They can also be run by a user visiting the godoc web page for de package.

package section2

import (
 "fmt"
)

func ExampleAddNumbers() {
 fmt.Println(AddNumbers(4, 6))
 // Output: 10
}

// Naming convention for Example Functions
func Example() { ... }
func ExampleFunction() { ... }
func ExampleType() { ... }
func ExampleType_Method() { ... }

// Example for Compare function (package: strings)
func ExampleCompare()
// Example for Writer type (package: bufio)
func ExampleWriter() { ... }
// Example for lines method in Scanner type (package: bufio)
func ExampleScanner_lines() { ... }

Testing in Go: 101 - Conf24:Golang 2022

16

Code Examples

Code Examples will be published to
godoc web page for the package.

This example shows the strings
package documentation at
https://pkg.go.dev/strings#Contains

Testing in Go: 101 - Conf24:Golang 2022

https://pkg.go.dev/strings#Contains

3.
Assertions

17

Assertions are sentences that must be true, in any other case our tests will fail.
There are a lot of assertion libraries, in this case we will use testify package.

18

Assertions

Interesting Assertions
Equal, NotEqual Zero, NotZero

Nil, NotNil ElementsMatch

Contains, NotContains Filesystem assertions

Error, NoError HTTP assertions

ErrorContains JSONEq, YAMLEq

package section3

import (
 "github.com/stretchr/testify/assert"
 "testing"
)

func TestAssertions(t *testing.T) {
 var zeroValue int
 assert.Zero(t, zeroValue, "Expected to have zero value")

 slice := []string{"foo", "bar", "test", "example"}
 assert.NotNil(t, slice, "Expected to have a value")

 assert.Contains(t, slice, "bar", "Expected to contain 'bar'")

 myValue := 10
 assert.Equal(t, 10, myValue, "Expected value is 10")

 list1 := []int{1,2,3,4,5}
 list2 := []int{3,2,5,1,4}
 assert.ElementsMatch(t, list1, list2, "List contains different elements")
}

Testing in Go: 101 - Conf24:Golang 2022

http://github.com/stretchr/testify

19

Assertions

func TestAssertions(t *testing.T) {
 slice := []string{"foo", "bar", "test", "example"}
 assert.Contains(t, slice, "barX", "Expected to contain 'barX'")
}

What happens if an assertion fails

> go test -run ^TestAssertionsFailing$./... -v
=== RUN TestAssertionsFailing
 assertions_failing_test.go:10:
 Error Trace: assertions_failing_test.go:10
 Error: []string{"foo", "bar", "test", "example"} does not contain "barX"
 Test: TestAssertionsFailing
 Messages: Expected to contains 'barX'
--- FAIL: TestAssertionsFailing (0.00s)
FAIL
FAIL github.com/fdaines/testing-101/section3 0.178s
FAIL

More readable output

Testing in Go: 101 - Conf24:Golang 2022

20

Assertions

Testing in Go: 101 - Conf24:Golang 2022

Assertions Libraries

● https://github.com/stretchr/testify

● https://github.com/onsi/gomega

● https://github.com/smartystreets/assertions

● https://github.com/pellared/fluentassert

● For more options: https://pkg.go.dev/search?q=assert

Testing in Go: 101 - Conf24:Golang 2022

https://github.com/stretchr/testify
https://github.com/onsi/gomega
https://github.com/smartystreets/assertions
https://github.com/pellared/fluentassert
https://pkg.go.dev/search?q=assert

4.
Test Doubles: Mocks and

Stubs

22

23

Context

SUT
(System Under Test)

Dependency

Benefits
▣ Easier to test SUT
▣ Expected states
▣ No side effects
▣ Tests run faster

SUT
(System Under Test)

Double

Test Suite

Real Implementation

Testing with Doubles

Testing in Go: 101 - Conf24:Golang 2022

24

Test Doubles
Test Doubles replaces some
dependencies to ease testing.
Test Doubles merely has to
provide the same API as the
real dependency so that our
system thinks it is the real
one.

Variation Description

Dummy Objects that are passed around to functions but never actually used.

Fake It has a real implementation of dependency API, but usually take some shortcut
which makes them not suitable for production (an InMemoryTestDatabase is a
good example).

Stub Provide canned answers to calls made during the test, usually not responding
at all to anything outside what's programmed in for the test.

Spies Are stubs that also record some information based on how they were called.
One form of this might be a logging service that records how many messages
were logged.

Mock They're similar to stubs but including expectations which form a specification of
the calls they are expected to receive. Usually they throw an exception if either
receive a call they don’t expect or doesn’t receive all the calls they were
expecting.

Sketch Types Of Test Doubles embedded from Types Of Test Doubles
Gerard Meszaros - xUnit Patterns

Testing in Go: 101 - Conf24:Golang 2022

https://martinfowler.com/bliki/InMemoryTestDatabase.html

25

Using Stubs
The easiest way to stub dependency components is to implement an object that complies
with the required interface. This is easy if we’re following clean code principles, where we
have an interface for every infrastructure component.

Testing in Go: 101 - Conf24:Golang 2022

type ConcreteDependency struct {
}
func (m ConcreteDependency) DoStuff() {
 // Do some stuff (call external service)
}

type MyBusinessType struct {
 innerDependency ConcreteDependency
}
func (m MyBusinessType) SomeBusinessLogicMethod() {
 m.innerDependency.DoStuff()
}

type MyInterface interface {
 DoStuff()
}

type MyBusinessType struct {
 innerDependency MyInterface
}
func NewBusinessType(dependency MyInterface) MyBusinessType{
 return MyBusinessType{dependency}
}
func (m MyBusinessType) SomeBusinessLogicMethod() {
 m.innerDependency.DoStuff()
}

Poor design, because MyBusinessType
depends directly on a concrete type.

Hard to test if concrete type calls
external services or triggers side effects

We can create many implementations of
MyInterface to test different behaviors.

26

Using Stubs

Testing in Go: 101 - Conf24:Golang 2022

The gostub packages allows us to stub
static variables and functions, and rolling
back to their original values/behavior
after the test is finished.

https://github.com/prashantv/gostub

27

Using Stubs

package section4

var configFile = "config.json"
var myFunction = MyOriginalBehavior

func MyOriginalBehavior() string {
 message := "Hello world"
 // message = callToExternalService()
 return message
}

package section4

import (
 "testing"
 "github.com/prashantv/gostub"
 "github.com/stretchr/testify/assert"
)

func TestForUnexistentConfigFile(t *testing.T) {
 stub := gostub.Stub(&configFile, "/unexistent_path")
 defer stub.Reset()

 content, err := readConfiguration()
 assert.Error(t, err, "Expect to receive an error")
}

func TestWithFixedReturnValue(t *testing.T) {
 stub := gostub.Stub(&myFunction, func () string {
 return "Bye World"
 })
 defer stub.Reset()

 message := myFunction()
 assert.Equal(t, "Bye World", message, "Unexpected message")
}

Testing in Go: 101 - Conf24:Golang 2022

https://github.com/prashantv/gostub

28

Using Mocks

A mock is like a stub
but the test will also
verify that the object
under test calls the
mock as expected.
Part of the test is
verifying that the mock
was used correctly.

Testing in Go: 101 - Conf24:Golang 2022

SUT
(System Under Test)

MockedObject

Test Suite

Links a set of Calling parameters with a specific behavior.
The test would fail when:

● One of the configured behavior was not called
● The test calls the functions with a non configured set of

parameters

29

Using Mocks with Testify
Testify offers some useful features

● mockedObject.On("MyMethod", arg1, arg2).Return(returnValues…).Once()

● mockedObject.On("MyMethod", arg1, arg2).Return(returnValues…).Twice()

● mockedObject.On("MyMethod", arg1, arg2).Return(returnValues…).Times(5)

● mockedObject.On("MyMethod", arg1, arg2).After(time.Second)

Example: The first time the method is called with certain arguments, return “Hello”, all

the next calls will return “Bye”.
 var mockedService = new(TestExampleImplementation)

 mockedService.On("MyMethod", 1, 2).Return("Hello").Once()

 mockedService.On("MyMethod", 1, 2).Return("Bye")

Testing in Go: 101 - Conf24:Golang 2022

30

Using mocks with Testify

Testing in Go: 101 - Conf24:Golang 2022

5.
Where to put tests?

31

32

Where should I put my Tests?
By convention, Go testing files should be always located in the same folder/package
where the code they are testing resides.
The Go compiler will exclude all the testing files when building our application, so we
don’t need to worry about having testing code into deployed artifacts.

mypackage

MyPublicFunction

privateFunction1

privateFunction2

mypackage
Can test all three functions, because the

same package is used

mypackage_test
Can only test MyPublicFunction,

because other functions are not visible

mypackage_test.go

Testing in Go: 101 - Conf24:Golang 2022

33

Where should I put my Tests?

Testing in Go: 101 - Conf24:Golang 2022

5.
Coverage Reports

34

35

Coverage Reports

Using go testing tool
> go test ./... -cover
ok github.com/fdaines/testing-101/section2 0.172s coverage: 100.0% of statements
ok github.com/fdaines/testing-101/section3 0.229s coverage: [no statements]
ok github.com/fdaines/testing-101/section6 0.275s coverage: 75.0% of statements

Testing in Go: 101 - Conf24:Golang 2022

36

Coverage Reports

Using go tool cover
> go test -covermode=count -coverprofile coverage.out ./...
ok github.com/fdaines/testing-101/section2 0.213s coverage: 100.0% of statements
ok github.com/fdaines/testing-101/section3 0.372s coverage: [no statements]
ok github.com/fdaines/testing-101/section6 0.454s coverage: 75.0% of statements

// The previous command will create a file ‘coverage.out’ that will be used in the next command

> go tool cover -func=coverage.out
github.com/fdaines/testing-101/section2/add_numbers.go:3: AddNumbers 100.0%
github.com/fdaines/testing-101/section6/student.go:9: NewStudent 100.0%
github.com/fdaines/testing-101/section6/student.go:17: ReceivesScolarship 71.4%
total: (statements) 83.3%

Testing in Go: 101 - Conf24:Golang 2022

37

Coverage Reports

Using go tool cover to generate an HTML report
// Using the same ‘coverage.out’ file generated with go test.
> go tool cover -html=coverage.out

Testing in Go: 101 - Conf24:Golang 2022

6.
BDD: Behavior Driven

Development

38

Motivation

Behavior Driven Development uses a simple DSL to convert structured human language

(like the one used in acceptance criteria) into executable tests.

User
Story

Acceptance Criteria 1

Acceptance Criteria 2

Acceptance Criteria N

…

Test
Suite

TestMyFunctionCase1

TestMyFunctionCase2

TestMyFunctionCase3

TestMyFunctionCase4

TestMyFunctionCaseN

…

Commonly using

Gherking Syntax
(Given, When, Then)

39

Specification Coding

Commonly using

Plain Go language

Testing in Go: 101 - Conf24:Golang 2022

BDD-style testing frameworks

● https://github.com/onsi/ginkgo

● https://github.com/smartystreets/goconvey

● https://github.com/franela/goblin

● https://github.com/azer/mao

● https://github.com/pranavraja/zen

40 Testing in Go: 101 - Conf24:Golang 2022

https://github.com/onsi/ginkgo
https://github.com/smartystreets/goconvey
https://github.com/franela/goblin
https://github.com/azer/mao
https://github.com/pranavraja/zen

BDD in Go using Ginkgo and Gomega

41

Acceptance Criteria

Given a Student
When his/her program is medicine
 And he/she has a GPA >= 80
Then he/she receives a scholarship

Given a Student
When his/her program is engineering
 And he/she has a GPA >= 75
Then he/she receives a scholarship

Given a Student
When his/her program is literature
 And he/she has a GPA >= 60
Then he/she receives a scholarship

Every other case: he/she doesn’t
receive scholarship

User Story

As a Dean
I want to know if a student is
elegible for a scholarship
So that I’ll have enough
information to prepare the
scholarships budget

Ginkgo + Gomega

Ginkgo offers a BDD style testing framework
● Functions like Describe, Context, When, It and

others allow us to create tests based on
acceptance criteria with little effort.

Gomega is a matcher/assertion library with an API that
help us to represent expectations from acceptance
criteria.

Testing in Go: 101 - Conf24:Golang 2022

Example using Ginkgo and Gomega

42

package section6

import (
 . "github.com/onsi/ginkgo/v2"
 . "github.com/onsi/gomega"
 "testing"
)

func TestSection6(t *testing.T) {
 // connects Ginkgo to Gomega. When a matcher fails the Fail handler (from Ginkgo) is called.
 RegisterFailHandler(Fail)
 // is the entry point for the Ginkgo spec runner.
 RunSpecs(t, "Testing package section6")
}

var _ = Describe("Checking scholarship elegibility", func() {
 When("the program is medicine", func() {
 Context("and the GPA >= 80", func() {
 student := NewStudent(18, "medicine", 80)
 It("receives the scholarship", func() {
 Expect(student.ReceivesScolarship()).To(BeTrue())
 })
 })
 Context("and the GPA < 80", func() {
 student := NewStudent(18, "medicine", 79)
 It("doesn't receive the scholarship", func() {
 Expect(student.ReceivesScolarship()).To(BeFalse())
 })
 })
 })
})

Testing in Go: 101 - Conf24:Golang 2022

Test-Driven Development: By Example, Kent Beck, 2002.

http://xunitpatterns.com/

https://github.com/stretchr/testify

https://github.com/onsi/ginkgo

https://github.com/onsi/gomega

43

References

Testing in Go: 101 - Conf24:Golang 2022

http://xunitpatterns.com/
https://github.com/stretchr/testify
https://github.com/onsi/ginkgo
https://github.com/onsi/gomega

thanks!

Any questions?
You can find me at

@fdaines
fdaines@gmail.com

44 Presentation template by SlidesCarnival

http://www.slidescarnival.com/

