
Successful Go for 
microservices architecture

1

Hervé Ah-Leung



Who?

2



3

Who am I?

Senior Software engineer in London

Smartnumbers since 2019 

(https://smartnumbers.com)



Microservices?

4



5

Monolith

- Gigantic mono-service
- Single database
- Unique repo

> difficult to extend/maintain

> often poor dev experience

Microservices

- Multiple autonomous 
meaningful services

- With their own databases
- In different repos

> scalable and easy to extend

> better dev experience

Monolith vs Microservices



6

Service map AWS X-Ray (March 2022)

Microservices disadvantages/challenges



7

- Complexity of communication between services
- Increase of latency if not careful
- Easily extendable/maintainable? yes and no

> Any programming language could help solving/mitigating those problems, 
but how do we make the most of Go to tackle them?

Microservices disadvantages/challenges



Let’s take full advantage of Go!

8



9

Cold start problem 3 years ago with Scala with serverless functions

Amazing serverless experience



10

Cold start depends on:

- the language
- the package size
- If inside a private network or not

Thorough article:

https://mikhail.io/serverless/coldstarts/aws/

Amazing serverless experience



11

Observations:

- awful cold starts with Scala (Java): 1 to 2s
- much better with Go: ms

Learning

- Go binaries are lightweight, therefore the provisioning time is small
- First success for our microservices for latency 

Amazing serverless experience



12

- Often Go SDKs available (AWS, GCP, Azure…)
- Plenty of tutorials available
- Living ecosystem and supportive community
- Living language (releases/improvements)

Learning

- Popularity of language massively helped to build smoothly the 
microservices

A well-supported and popular language



13

- Standard libraries!

Excellent tooling



14

- Dependencies management with inbuilt Go modules (we started with dep)

Excellent tooling



15

Testing

- gomega: matcher/assertion lib
- ginkgo: BDD test framework

Libraries

- goReleaser: binaries builder

GraphQL

- gqlgen: graphQL server generator

Excellent tooling



16

Quick special mention to Goland

Excellent tooling



17

Learning

- Key libraries/tooling make the dev experience solid
- Faster to build microservices
- Reliable quality
- Writing Go is enjoyable

Excellent tooling



- Relatively easy to learn
- A few keywords
- Explicit friendly syntax

- Room to improve if challenges are needed
- Garbage collection
- Concurrency model

- A junior member even did a presentation to the whole engineering 
department about Go

18

New joiner experience

A tour of Go
go.dev/tour

Go by example
gobyexample.com/



Learning

- Nice dev experience for a junior software engineer
- Rewarding learning curve
- Nice experience as a mentor
- Can focus on the microservices instead of language details

19

New joiner experience



Any limitations?

20



21

Idea of contexts (not Go context…)

Folders and packages organisation



22

Learning

Organising in context helps to identify common packages and extract them as 
common libraries.

Tooling then do the rest.

Folders and packages organisation



23

Not necessarily impacting a microservices architecture, but worth mentioning

- Pointers
- Null pointer exception leading to actual panic

- Interfaces
- Implicit interfaces concept sometimes difficult to understand for a beginner

Specificities of the language



Next steps?

24



25

As a Go software engineer

I want to write my infrastructure in Go

I want to write my deployment pipeline in Go

I want to write my tasks runner in Go

I want to write Go to generate my documentation

So then I don’t write awful YAML

Wider Go usage?



26

- Structure data serialisation

Protobuf?



27

Generics?



In conclusion?

28



29

- Main issues of a microservices architecture
- Complexity of communication between services
- Latency between services

- Go helps to ease the pain points
- Excellent performances
- Excellent tooling
- Good popularity
- Excellent dev experience

- Probably more Go features to come to build amazing software! 

Wrap up



Thank you!

30


