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Who am I?

Senior Software engineer in London

Smartnumbers since 2019 

(https://smartnumbers.com)



Microservices?
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Monolith

- Gigantic mono-service
- Single database
- Unique repo

> difficult to extend/maintain

> often poor dev experience

Microservices

- Multiple autonomous 
meaningful services

- With their own databases
- In different repos

> scalable and easy to extend

> better dev experience

Monolith vs Microservices
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Service map AWS X-Ray (March 2022)

Microservices disadvantages/challenges
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- Complexity of communication between services
- Increase of latency if not careful
- Easily extendable/maintainable? yes and no

> Any programming language could help solving/mitigating those problems, 
but how do we make the most of Go to tackle them?

Microservices disadvantages/challenges



Let’s take full advantage of Go!
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Cold start problem 3 years ago with Scala with serverless functions

Amazing serverless experience
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Cold start depends on:

- the language
- the package size
- If inside a private network or not

Thorough article:

https://mikhail.io/serverless/coldstarts/aws/

Amazing serverless experience
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Observations:

- awful cold starts with Scala (Java): 1 to 2s
- much better with Go: ms

Learning

- Go binaries are lightweight, therefore the provisioning time is small
- First success for our microservices for latency 

Amazing serverless experience
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- Often Go SDKs available (AWS, GCP, Azure…)
- Plenty of tutorials available
- Living ecosystem and supportive community
- Living language (releases/improvements)

Learning

- Popularity of language massively helped to build smoothly the 
microservices

A well-supported and popular language
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- Standard libraries!

Excellent tooling
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- Dependencies management with inbuilt Go modules (we started with dep)

Excellent tooling



15

Testing

- gomega: matcher/assertion lib
- ginkgo: BDD test framework

Libraries

- goReleaser: binaries builder

GraphQL

- gqlgen: graphQL server generator

Excellent tooling
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Quick special mention to Goland

Excellent tooling
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Learning

- Key libraries/tooling make the dev experience solid
- Faster to build microservices
- Reliable quality
- Writing Go is enjoyable

Excellent tooling



- Relatively easy to learn
- A few keywords
- Explicit friendly syntax

- Room to improve if challenges are needed
- Garbage collection
- Concurrency model

- A junior member even did a presentation to the whole engineering 
department about Go
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New joiner experience

A tour of Go
go.dev/tour

Go by example
gobyexample.com/



Learning

- Nice dev experience for a junior software engineer
- Rewarding learning curve
- Nice experience as a mentor
- Can focus on the microservices instead of language details
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New joiner experience



Any limitations?

20



21

Idea of contexts (not Go context…)

Folders and packages organisation
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Learning

Organising in context helps to identify common packages and extract them as 
common libraries.

Tooling then do the rest.

Folders and packages organisation
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Not necessarily impacting a microservices architecture, but worth mentioning

- Pointers
- Null pointer exception leading to actual panic

- Interfaces
- Implicit interfaces concept sometimes difficult to understand for a beginner

Specificities of the language



Next steps?
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As a Go software engineer

I want to write my infrastructure in Go

I want to write my deployment pipeline in Go

I want to write my tasks runner in Go

I want to write Go to generate my documentation

So then I don’t write awful YAML

Wider Go usage?
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- Structure data serialisation

Protobuf?
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Generics?



In conclusion?
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- Main issues of a microservices architecture
- Complexity of communication between services
- Latency between services

- Go helps to ease the pain points
- Excellent performances
- Excellent tooling
- Good popularity
- Excellent dev experience

- Probably more Go features to come to build amazing software! 

Wrap up



Thank you!
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