

Greenfield vs. Brownfield Data Labeling to improve AI performance

Very short intro to labeling

Dear Mr. Müller,

[...]

The accident happened on O7 November between 8 and 8:30 on the way to work. In the traffic jam, the person behind me drove up too close, so that there are now two larger dents on the rear of my VW Golf. What is the best way to proceed?

Best, Johannes Hötter

Dear Mr. Müller, [...] The accident happened on O7 November between 8 and 8:30 on the way to work. In the traffic jam, the person behind me drove up too close, so that there are now two larger dents on the rear of my VW Golf. What is the best way to proceed? Best, Johannes Hötter

Issue: car damage

Green- and brownfield

New projects

Design from scratch

New environment

Existing projects

Integration into systems

Working with legacy

Green- and brownfield in ML

Only raw data

From 0% to 90%

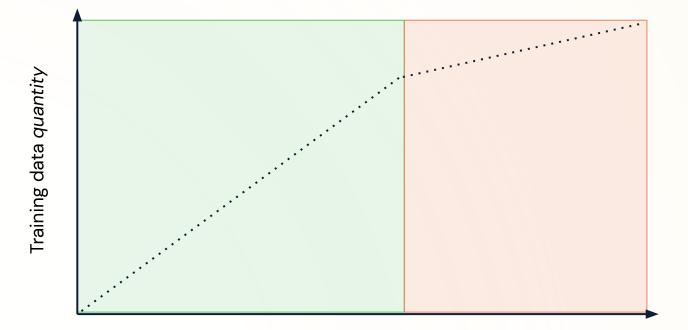
Proof of concept

Training data is available

From 90% to 95%

Continuous improvement

Green- and brownfield in ML



Training data quality

Labeling from scratch

Crowd Labeling

Inhouse Labeling

Globally scalable, but not designed for knowledge-intensive, privacy-sensitive tasks

Highest possible domain-knowledge, but not scalable and efficient at all

Weak supervision – a ML-oriented information integration

Types of **heuristics**

• Labeling functions

def starts_with_digit(record):
 if record["headline"].text[0].is_digit:
 return "Clickbait"

- Distant supervision (lookup values)
- Active (transfer) learning modules
- Zero-shot classifiers (e.g. from Hugging Face)
- Unexperienced labelers (e.g. crowdlabeling)
- 3rd party systems, legacy systems, ...

Interface to collect noisy labels; Relevance of each heuristic can be derived from e.g. manually labeled reference data

But why train then?

Labeling

- Automate to build
- Runtime doesn't matter (not user-facing)
- Potential to include data that isn't available at runtime
- Aim for highest confidence predictions

Inference

- Automate to *run*
- Inference often required within ms
- Prediction for every record
- Rule of thumb: Model learns to further generalize

Manual labeling still matters!

Exploring data

Ideating automation

Reference data

Human performance

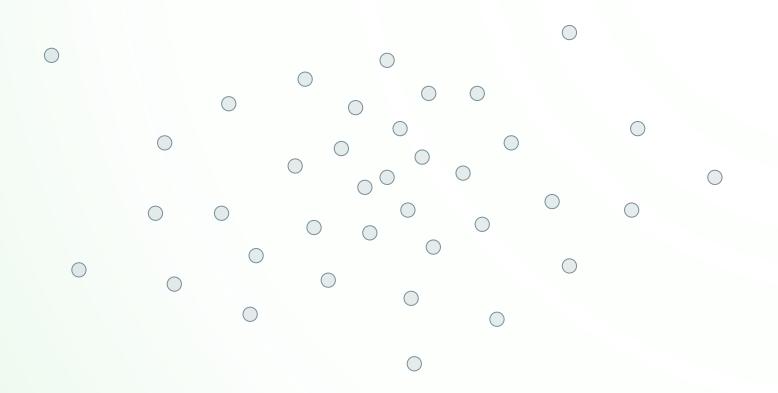
Strategies for manual labeling

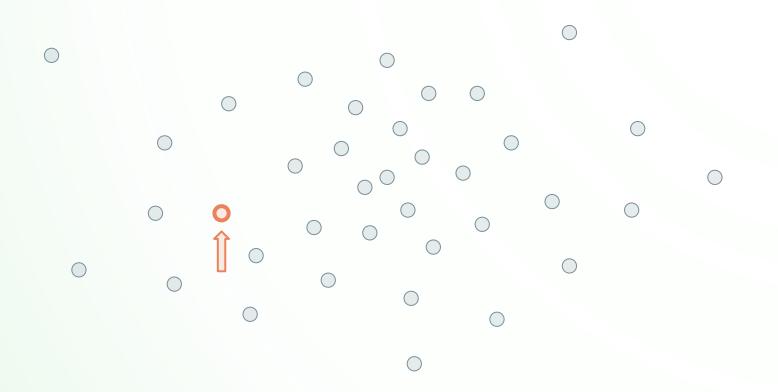
Neural search

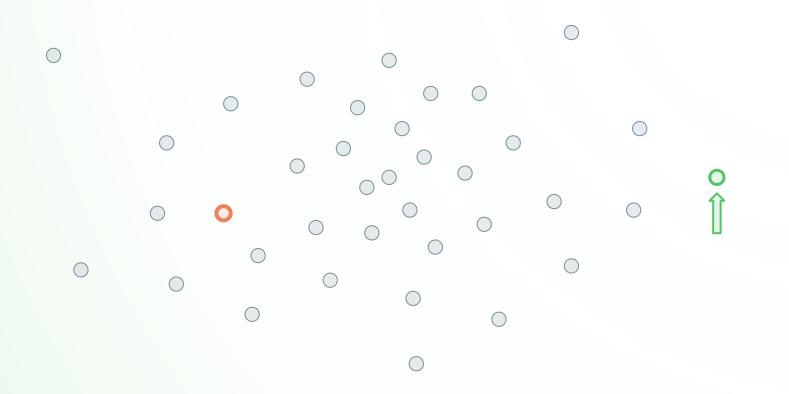
Heuristics validation

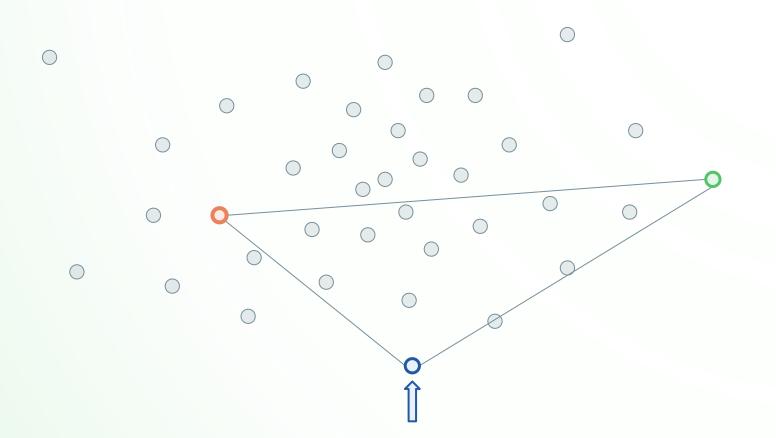
Random sampling

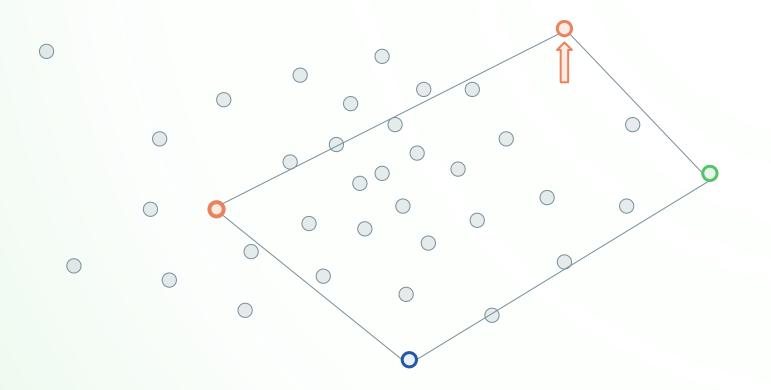
People filter

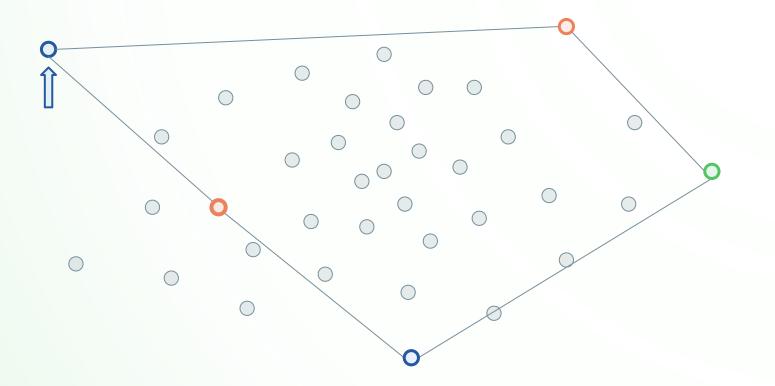




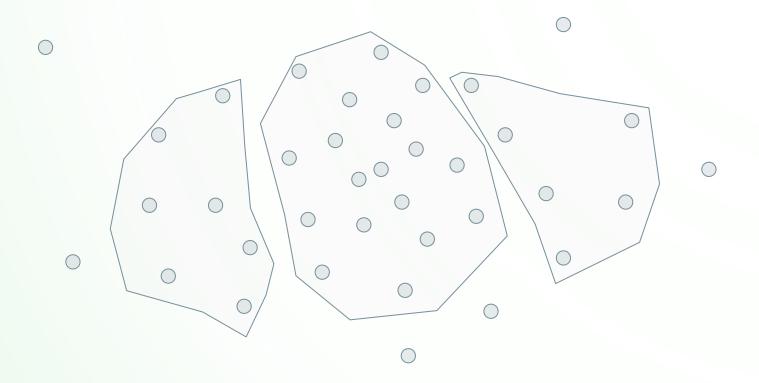








Neural search-based manual labeling by clustering



Only in rare occasions, your training data will be *super* clean. In real world, it is mostly messy.

This is what we mean with **brownfield**; improving existing training data.

MNIST CIFAR-10 CIFAR-100 Caltech-256 ImageNet QuickDraw

given: 5 corrected: 3

given: cat corrected: frog

given: lobster corrected: crab

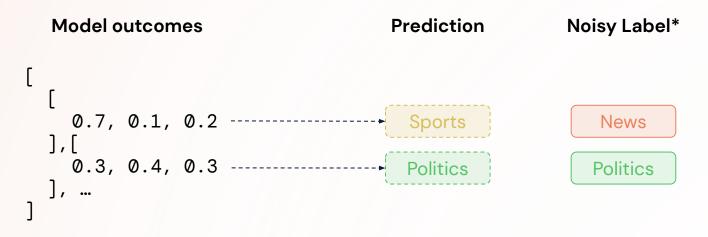
given: ewer given: white stork corrected: teapot corrected: black stork

COX

given: tiger corrected: eye

Image source: https://github.com/cleanlab/cleanlab

Confident Learning



order: [Sports, News, Politics]

*known to potentially differ from the ground truth

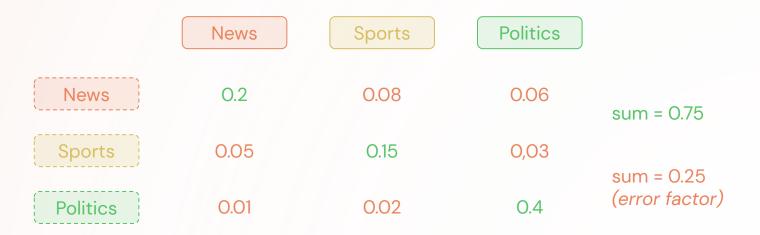
With a trained model, you can estimate the joint distribution of noisy and true labels ...

	News	Sports	Politics
News	0.2	0.08	0.06
Sports	0.05	O.15	0,03
Politics	0.01	0.02	0.4

*known to potentially differ from the ground truth

Confident Learning

... and estimate the number of errors



*known to potentially differ from the ground truth

Confident Learning

Model outcomes

order: [Sports, News, Politics]

We can turn these into confidence scores, sort by them ascending, and take the first 25% (error rate) as potential label errors

Debugging heuristics


```
def starts_with_digit(record):
 if record["headline"].text[0].is_digit:
```

```
return "Clickbait"
```

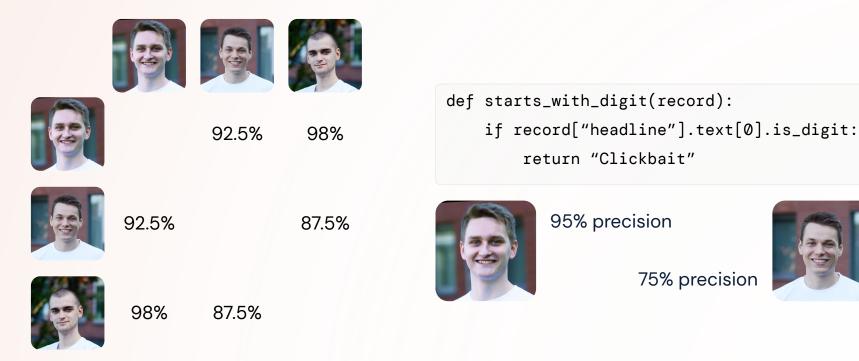
Precision 83% Coverage 2.5%

92%

```
analyze filter where starts_with_digit == "Clickbait"
```

```
def starts_with_digit(record):
 if record["headline"].text[0].is_digit
                                              Precision
 and record["sentiment"] > 0.7:
                                              Coverage 1.8%
     return "Clickbait"
```

Inter annotator agreement and bias in heuristics



Some food for thoughts

- As training data is an integral part of ML-applications, what will the *maintenance/documentation* of data look like?
- How can programmable labeling empower data debugging?
 Will focused labeling shift towards holistic enrichments instead?

Weak supervision

"Data Programming: Creating Large Training Sets, Quickly" by Ratner et al.

(great resource from the founders of Snorkel)

Confident learning

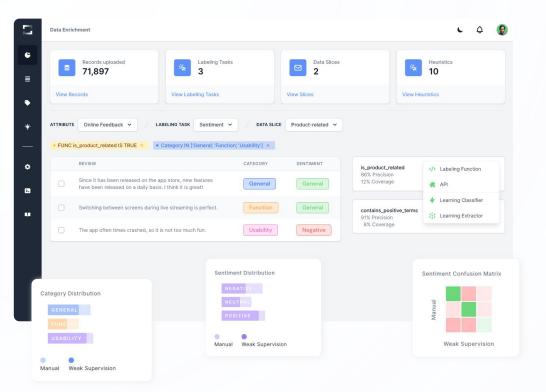
"Confident Learning: Estimating Uncertainty in Dataset Labels" by Northcutt et al. (also comes with a great blog post here: https://I7.curtisnorthcutt.com/confident-learning)

Neural search

Open-source vector databases like qdrant.tech

Our own research about integrating such technologies will be published at **NLDB 2022**, stay tuned ("kern: a labeling environment for large-scale, high-quality training data")

We're open-sourcing toolkits for data-centric Al



Register for our newsletter on our website www.kern.ai

Feel free to reach out 😃

Johannes Hötter johannes.hoetter@kern.ai https://www.linkedin.com/in/johanneshötter/

Thanks for having me!