
ıılıılıı cısco

Quantum Communication Challenges in Scaling Quantum Computers

Sam Samuel Director of Engineering ET&I June 2022 Quantum "X" (why now?)

There is no doubt that there is investment interest in Quantum Startups

Total: \$1.5B

Quantum Computing Hardware: \$950M

Quantum Software: \$300M

Quantum Communication/Internet: \$200M

Subscribe Sign I

World U.S. Politics Economy Business Tech Markets Opinion Life & Arts Real Estate WSJ, Magazine

Search ()

CIO JOURNA

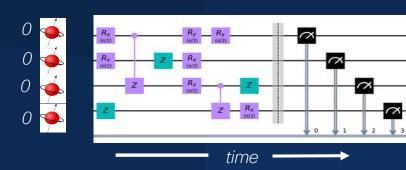
Quantum-Computing Startup IonQ Plans Public Debut in \$2 Billion SPAC Merger

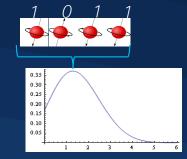
lonQ is competing against several big tech companies set on commercializing the technology

What is Quantum Computing?

Superposition (of qubits)

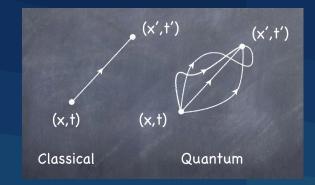
classical 0100110101


 $\begin{array}{c} \text{quantum} \\ p_0 0000000000 \\ +p_1 0000000001 \\ +p_2 0000000010 \\ +p_{2^N} 1111111111 \end{array}$


Entanglement (strange correlations)

 $\bigcirc \neq \bigcirc$

We know the state of the system as a whole, not the individual pieces


Quantum circuits are probabilistic in nature

probabilistic outcome

A quantum computer explores all possible configurations. Simultaneously!

© 2021

Cisco Confidentia

What are the possible implications?

Potential Problem ... or Opportunity

Quantum Computer potency follows a double exponential law on the number of Qubits

Generation	0	1	2	3	4	5	 Ν
Exponential E.g. Moore's Law (2 ⁶)	1	2	4	8	16	32	 2 ^{<i>N</i>}
Double Exponential E.g. Nevin's Law (2 ^{2^G)}	2	4	16	256	65546	~4.3*10 ⁹	 2 ^{2^N}

Hartmut Neven: Observed that quantum computers are gaining computational power at a doubly-exponential rate

Shor's algorithm does comply with Neven's law

If Quantum Computing delivers on its promise then there could be a threat to the security of a network

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

In Practical Terms

... It is a matter of time before Quantum Impacts us

AES key-length k	RSA Bits	Elliptic Curve (bits length)	Notes		
48	480	96	DO NOT USE		
50	512		(trivial)		
56	640	112			
62	768		Advised against		
64	816	128			
73	1024				
80	1248	160	Caution - well funded criminal gangs		
89	1536				
103	2048		Nation state ?	Neven's Law	
112	2432	224	Nation State !		
128	3248 (or 3072)	256	2030's	Quantum acceleration?	
160	5312 (or 4096)	320			
192	7936 (or 7680)	384	Beyond 2030's		
256	15424 (or 15360)	512			

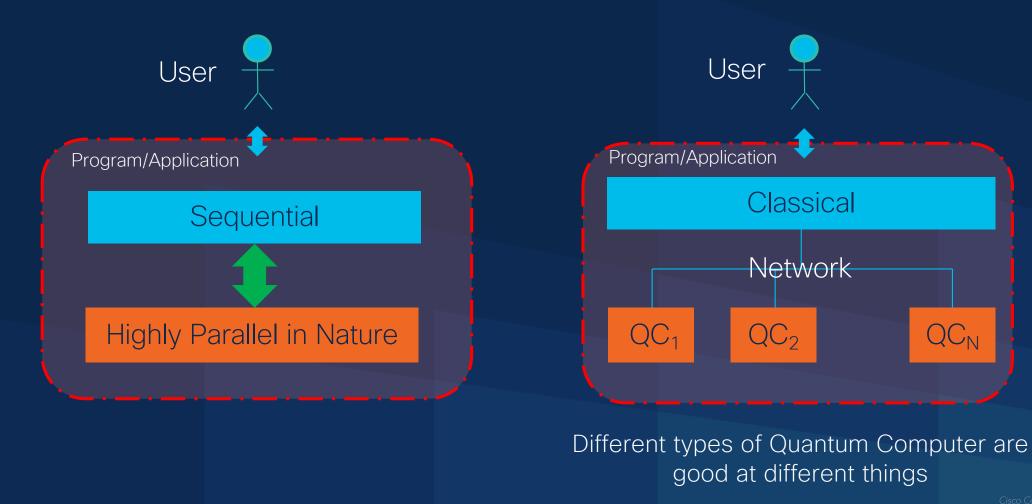
Do we see this as a threat or an opportunity?

Cisco Confidential

In Practical Terms

... It is a matter of time before Quantum Impacts us

	AES key-length k	RSA Bits	Elliptic Curve (bits length)	Notes			
	48	480	96	DO NOT USE			
	50	512		(trivial)			
	56	640	112				
	62	768		Advised against			
	64	816	128				
	73	Impacted	hy Shor's				
	80			Caution – well funded criminal gangs			
	89	Impacted by Shor's 1536 algorithm					
	103	2048		Nation state ?	Neven's Law		
	112	2432	224	Nation State !			
	128	3248 (or 3072)	256	2030's	Quantum acceleration?		
Pro	bably OK 160	5312 (or 4096)	320				
	192	7936 (or 7680)	384	Beyond 2030's			
OK	256	15424 (or 15360)	512				
	Not OK - Impacts any key exchange						


Or, we can use it to solve really complex problems ...

Cisco Confidential

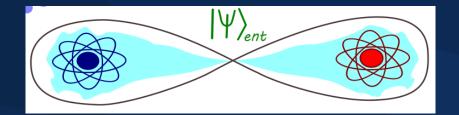
Stating the obvious ... You can always join computers together to make a bigger computer

... And applications can be distributed too

Cisco Confidentia

Some new concepts for communications

Quantum State and No Cloning


A quantum state is a mathematical entity that provides a <u>probability distribution</u> for the outcomes of each possible <u>measurement</u> on a system.

There is a "No cloning" theorem

A quantum state cannot be measured nor copied without the state being destroyed

Entanglement

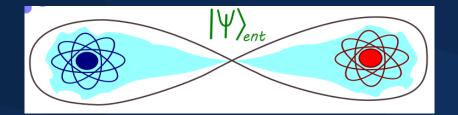
A term to describe the quantum state of two or more particles that cannot be described independently from each other

Entangled particles separated by a great distance remain entangled (Einstein's "spooky action at distance")

Different kind of particles (matter or flying qubit) can be entangled together

Some new concepts for communications

Quantum State and No Cloning


A quantum state is a mathematical entity that provides a <u>probability distribution</u> for the outcomes of each possible <u>measurement</u> on a system.

There is a "No cloning" theorem

A quantum state cannot be measured nor copied without the state being destroyed

Entanglement

A term to describe the quantum state of two or more particles that cannot be described independently from each other

Entangled particles separated by a great distance remain entangled (Einstein's "spooky action at distance")

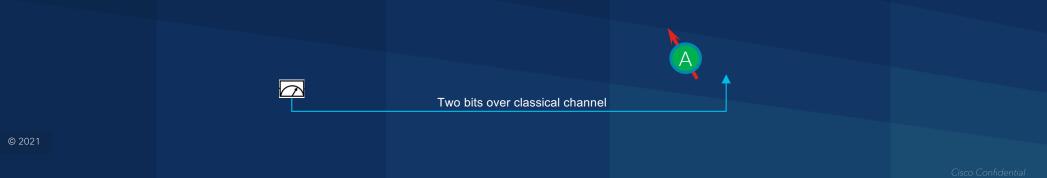
Different kind of particles (matter or flying qubit) can be entangled together

Assuming we can generate two remote entangled particles in particular state "Maximally entangled Bell state" (EPR pairs)

quantum physics enables the possibility to transfer (teleport) a quantum state via local operations and transmissions of 2 classical bits

© 2021

Assuming we can generate two remote entangled particles in particular state "Maximally entangled Bell state" (EPR pairs)


quantum physics enables the possibility to transfer (teleport) a quantum state via local operations and transmissions of 2 classical bits

Assuming we can generate two remote entangled particles in particular state "Maximally entangled Bell state" (EPR pairs)

quantum physics enables the possibility to transfer (teleport) a quantum state via local operations and transmissions of 2 classical bits

Assuming we can generate two remote entangled particles in particular state "Maximally entangled Bell state" (EPR pairs)

quantum physics enables the possibility to transfer (teleport) a quantum state via local operations and transmissions of 2 classical bits

© 2021

Cisco Confidential

Assuming we can generate two remote entangled particles in particular state "Maximally entangled Bell state" (EPR pairs)

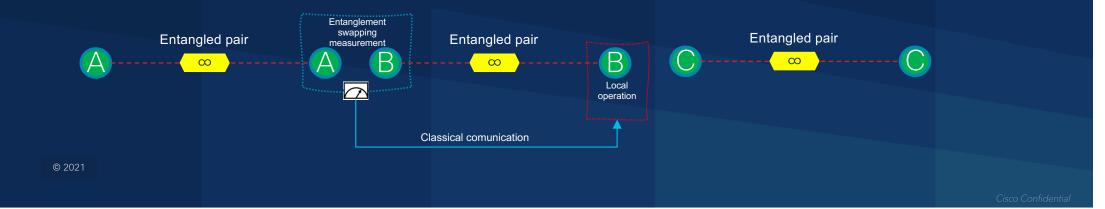
quantum physics enables the possibility to transfer (teleport) a quantum state via local operations and transmissions of 2 classical bits


© 2021

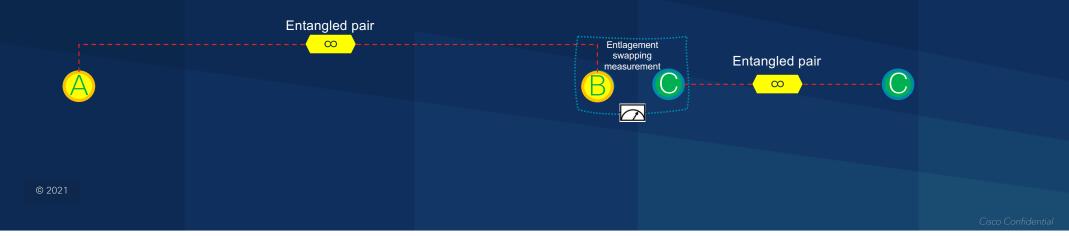
Cisco Confidential

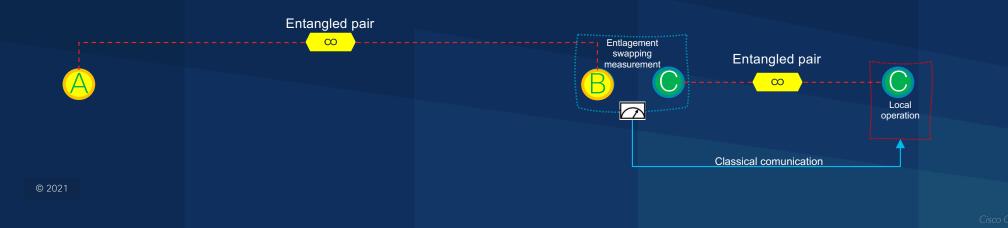
Communication

Once we have multiple maximally entangled pair segments,


Once we have multiple maximally entangled pair segments,

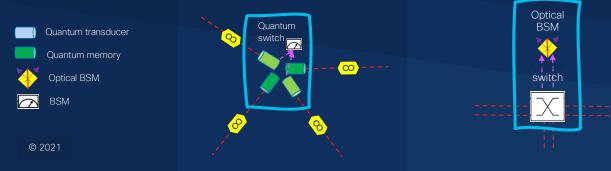
Once we have multiple maximally entangled pair segments,

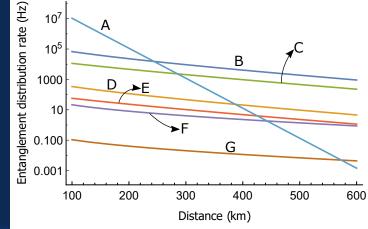

Once we have multiple maximally entangled pair segments,


Once we have multiple maximally entangled pair segments,

Once we have multiple maximally entangled pair segments,

Once we have multiple maximally entangled pair segments,


Quantum networking using teleporting


Long distance teleportation – chaining segments with quantum regeneration

Quantum networking needs

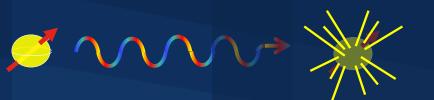
- appropriate Entanglement Distribution Rate for teleporting
- path switching achievable performing entanglement swapping on the appropriate quantum memory.

Sourabh Kumar, ikolao Lauk and Christoph Simon Towards long-distance quantum networks with superconducting processors and optical links (2019) https://arxiv.org/pdf/1812.08634.pdf

Note: we can envision routing done also optically but memory would be anyhow required somewhere to perform entanglement swapping quantum regeneration.

Challenges

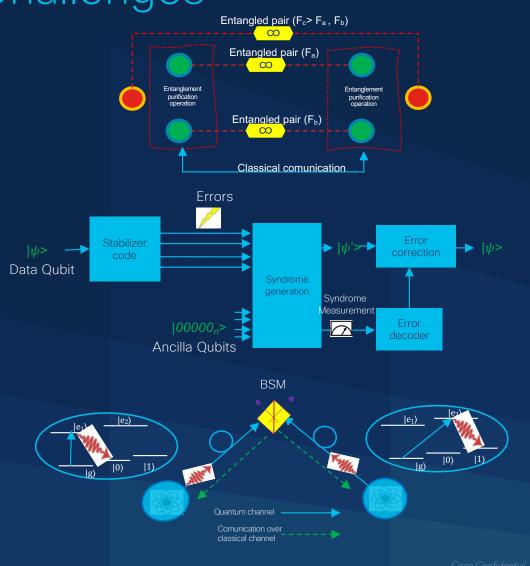
Qubit challenges


Matter qubits:

- Error during programming of initial states
- Coupling with environment causing decoherence
- Limited lifetime (us, ms)
- Quantum Gate accuracy:
- Operation error
- Flying qubits:
- Photon losses

Fidelity: a value between 0 and 1 that is a measure of the "closeness" of two **quantum** states.

Cisco Confidential


Network Challenges

Entangled pair generation rate

- With high fidelity and purity
- Quantum Error Correction
 - Protects against decoherence, quantum noise photon loss
 - Good idea but requires even more Qubits

Network Synchronisation

- Entanglement requires wave functions to overlap in time
 detected via Bell State Measurement
- Wavelength, synchronization and polarization alignement must be controlled tightly
- Once available entanglement must be consumed before decoherence destroy it.
- Quantum memory coherence Qubits have a shelf life

Pragmatic way forward

Quantum regenerator generations and network implications

Literature aligning around 3 possible quantum regen "generation" using HEG, purification and QEC to address either/or losses or operation error.

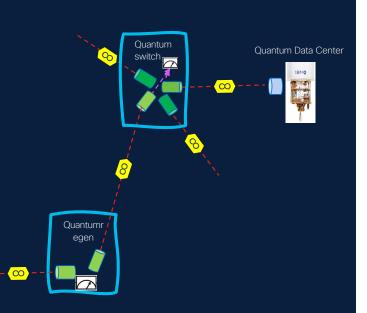
QEC offers the advantage of faster transmission but regen distances limited below 3dB.

Third generation regenerator will be more suitable for short distance quantum network

QR – Quantum Regenerator HEG – Heralded Entanglement Generation HEP – Heralded Entanglement Purification QEC – Quantum Error Correction

	First Generation QR	Second Generation QR	Third Generation QR		
Schematic Architecture	R R-1 R-2 R-3 R-4	R Contraction of the second se	R R. R. R. R. R R. R. R. R R. R. R. R R. R. R. R R. R. R R. R. R R. R R. R. R R. R. R. R. R. R. R. R. R. R. R. R. R. R		
Loss Error	HEG (two-way signaling)	HEG (two-way signaling)	QEC (one-way signaling)		
Operation Error	HEP (two-way signaling)	QEC (one-way signaling)	QEC (one-way signaling)		
Procedure	 Create entangled pairs over L₀ between adjacent stations At k-th level, connect two pairs over L_k and extend to L_{k+1}=2L_k, followed by HEP. After n nesting levels, obtain high-fidelity pair over L_{tot}=2ⁿ×L₀ 	 Prepare encoded states 0>_L and +>_L Use teleportation-based non-local CNOT gates to create encoded Bell pairs between adjacent stations. Connect intermediate stations to create long distance encoded Bell pair 	 Encode information with a block of qubits that are sent through a lossy channel Use QEC to correct both loss and operation errors Relay the encoded information to the next station; and repeat steps 2 & 3. 		
Characteristic time scale	Max(L _{tot} /c, t ₀)	$Max(L_0/c, t_0)$	t _o		
Cost Coefficient (C') Poly(L _{tot})		PolyLog(<i>L</i> _{tot})	PolyLog(<i>L_{tot}</i>)		

Seraman Muralidharan, et al: Optimal Architectures for Long Distance Communication (2016) <u>https://www.nature.com/articles/srep20463</u>

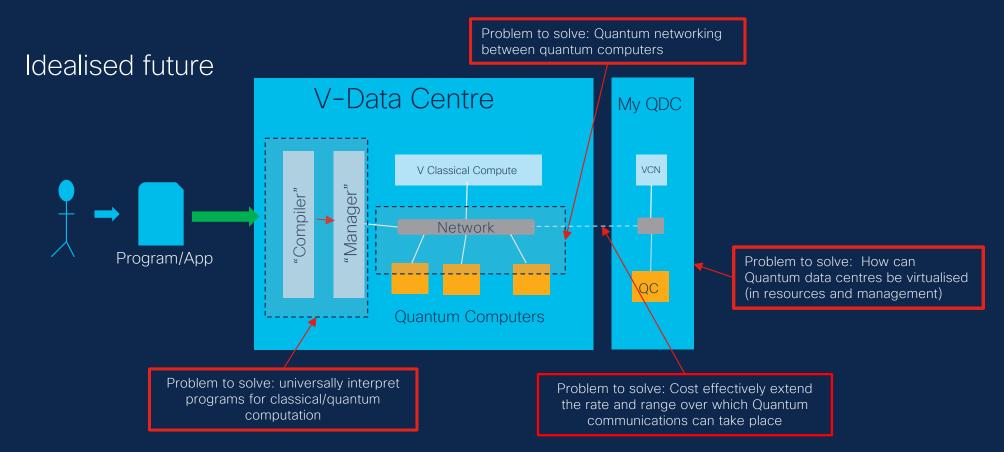

Quantum internet

- Will manage regen of different generation/technologies:
 - Direct transmission with QEC or teleporting via entanglement pairs generation and eventually purification.

Quantum regen Quantum switch —

Quantum

- In case of teleporting:
 - Fidelity and use of purification affect the entanglement rate need.
 - A "pseudo" path routing is selected via entanglement swapping.
 - A parallel classical network is required to vehicle control, entanglement swapping and purification informations.


Quantum trasducer Ouantum memory

Optical BSM

BSM

Wrap up

Possible end state and problems to solve

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

·IIIII CISCO

THANK YOU!