

Pushing Rust to the limit in a
Blockchain Environment

🦀

Who I am

- Engineer at Elrond for almost 4 years, rustacean for 3
- Passionate about languages, frameworks and models
- Favorite emoji: 🪓 (the axe)
- Also, 🦀❤

This Presentation

1. Crash course in Elrond Architecture
2. How to build a Smart Contract framework in 300+

easy steps (abridged)
3. How to push Rust to the breaking point (almost)

Crash Course in Elrond Architecture

What is Elrond?

- A super fast & cheap Layer 1 blockchain
- Sharding, fast smart contracts, great dApps (Maiar, Maiar

DEX, etc.)
- Innovative eGold tokenomics
- A growing ecosystem of developers & users

What about Smart Contracts?

The fastest Blockchain is useless without the fastest VM …

… which is useless without the fastest smart contract code.

Portable code, near-native execution:
WebAssembly + Wasmer

VM-Wasmer integration

How it all works?

High level language

WASM smart contract code

JIT-ed, cached local machine code

Blockchain

So the objectives:

- Contract size is crucial (JIT & blockchain storage are expensive)
- Speed (obviously)
- Devs shouldnʼt worry about a lot of things (and cannot be trusted)

Only one modern language cuts it …

How to build a Smart Contract
framework in 300+ easy steps

(abridged)

🦀

Make it fast!

No time for:
➢ big number arithmetic,
➢ crypto function implementation,
➢ memory allocation 🤕

SC 🧠
VM

Make it pretty!

Make it pretty!

Make it testable!

to WASM

to Testing

Make it interoperable!

MAGIC!

Make it interoperable!

Some ugly
auto-generated

code

Make it interoperable!

Some ugly
auto-generated

code

Auto-generated
proxy

Make it composable!

Seems easy, until you realize ….

Make it composable!

Auto-generated
proxy

Auto-implemented
methods

Auto-generated
proxy impl

Auto-generated
proxy

Auto-implemented
methods

Auto-generated
proxy impl

Make it composable!

How to avoid stray endpoints:

1. Prepare oneself spiritually for an onslaught of meta-programming
2. Generate the ABI (too soon!)
3. Via macros, generate code that generates an ABI (for each module)
4. Make a meta crate that will handle meta-things
5. Call the ABI generator (for the entire contract)
6. Generate a wasm crate based on the ABI
7. Build the wasm crate to produce a .wasm file
8. Move the .wasm file somewhere nice
9. Sigh in relief

Make it composable!

fn generate_abi() {
 add(“some_endpoint”);
 my_module_a::generate_abi();
}

fn generate_abi() {
 add(“call_mod_a”);
}

ABI
 some_endpoint
 call_mod_a

WASM
 some_endpoint
 call_mod_a

Make it composable!

fn generate_abi() {
 add(“some_endpoint”);

}

ABI
 some_endpoint

WASM
 some_endpoint

Make it escape!

Why not use all the magic off-chain too?

So to sum up …

… the 300+ easy steps to building a framework can be grouped into:

Make it fast!
Make it pretty!

Make it testable!
Make it interoperable!
Make it composable!

Make it escape!

(not necessarily in that order)

How to push Rust to the breaking point
(almost)

🦀

Exhibit A: Fat Result<T, E>

How a sane person writes a deserializer trait:

… turns out Result handling inflates bytecode size quite a bit

How we do:

➢ In contracts we use a “panicking” error handler, with error type ! (never)
➢ Result<Self, !> is compiled as Self

Exhibit A: Fat Result<T, E>

- Requirements:
- Auto-generate an argument loader for each endpoint
- Allow variadic args
- If there are no varargs, output code like: get_arg(0); get_arg(1); …
- If there are varargs, output code like: while more_args() { get_arg(i); i+= 1 }
- The compiler should decide by arg type alone (macros have no idea)
- … so looking like heavy generics ahead

Exhibit B: Vararg Madness

Exhibit B: Vararg Madness

- Solution:
- Compile-time functional-style “fold”, or whatever this is:

- Using the magic of generics and monomorphization, all ifs in load_args can peek into the future and
are resolved at compile time!

- Yes, you can make static lists by nesting tuples forever!

Managed types™:
 the VM owns the data, types are glorified handles, but we still need to play the Rust ownership game!

Exhibit C: Owning stuff that isn’t there

What the dev sees Whatʼs in the bytecode Who owns
the data

let x: BigInt; i32 x

let y: &BigInt = &x; &i32 x

let z = y.clone(); i32 (+ a clone instruction) z

let v: ManagedVec<BigInt> = … i32 v

let item: ??? = v.get(i); cannot be &i32 … nothing to point to v

let item_ref: &BigInt = item.deref(); &i32 ??? v

Exhibit C: Owning stuff that isn’t there

What the dev sees Whatʼs in the bytecode Who owns
the data

let x: BigInt; i32 x

let y: &BigInt = &x; &i32 x

let z = y.clone(); i32 (+ a clone instruction) z

let v: ManagedVec<BigInt> = … i32 v

let item: ManagedRef<’_, BigInt> = v.get(i); i32 v

let item_ref: &BigInt /* 😕? */ = item.deref(); &i32, and we transmute from there! v

Managed types™:
 the VM owns the data, types are glorified handles, but we still need to play the Rust ownership game!

Hope you enjoyed the ride!

More information at https://docs.elrond.com/
Reach out:

andrei.marinica@elrond.com
https://t.me/ElrondDevelopers
https://t.me/ElrondNetwork

Follow on:
https://twitter.com/andreimmarinica
https://twitter.com/ElrondNetwork

Thank you for watching!

https://docs.elrond.com/
mailto:andrei.marinica@elrond.com
https://t.me/ElrondDevelopers
https://t.me/ElrondNetwork
https://twitter.com/andreimmarinica
https://twitter.com/ElrondNetwork

