
🚀 Supercharge your 
NodeJS with Rust

Dmitry Kudryavtsev
Senior Software Engineer @ Forter / ex-Autodesk
https://yieldcode.blog



What the…

JavaScript?!

@skwee357 @kudmitry

🚀 Supercharge your NodeJS with Rust

2



JavaScript and NodeJS are great

But they are also slow For some operations

@skwee357 @kudmitry

🚀 Supercharge your NodeJS with Rust

Native Modules in C/C++ or Rust

3



But why Rust?
🚀 Supercharge your NodeJS with Rust

Why not C/C++?

● They show their age
● They lack modern 

tooling (decent 
dependency 
manager, relatively 
poor stdlib)

● They are not memory 
safe (segfaults 😨)

Why Rust?

● Strongly typed & 
Compiled

● Rich stdlib: smart 
pointers, containers, 
iterators…

● Modern tooling: 
Cargo

● Memory safe (no 
segfaults 🤩)

4

@skwee357 @kudmitry



Great and all… But… 
How?

🚀 Supercharge your NodeJS with Rust

5

@skwee357 @kudmitry



Meet NEON. Node native 
modules with Rust

🚀 Supercharge your NodeJS with Rust

6

@skwee357 @kudmitry



src/lib.rc
🚀 Supercharge your NodeJS with Rust

7

@skwee357 @kudmitry

Require the needed code from 
Neon

The Fibonacci Logic

A “glue” layer between JS and Rust

The “export” of Rust function into 
JS world



Building the Rust Module
🚀 Supercharge your NodeJS with Rust

8

@skwee357 @kudmitry

cargo-cp-artifact -nc index.node -- cargo build 
--message-format=json-render-diagnostics

A dynamic library file (.dll / .so equivalent from C/C++ 
under Windows / *nix)



How to call from NodeJS
🚀 Supercharge your NodeJS with Rust

9

@skwee357 @kudmitry



I’ve heard something 
about so called WASM… 

🧐

🚀 Supercharge your NodeJS with Rust

10

@skwee357 @kudmitry



What is WASM / Web Assembly?
🚀 Supercharge your NodeJS with Rust

11

@skwee357 @kudmitry

WebAssembly

● Portable Binary Format
○ And corresponding text format

● Executed by VM
● Supported in all major browsers (and NodeJS)
● Can be written in AssemblyScript
● A compilation target for other Languages (Rust among 

them)



src/lib.rs
🚀 Supercharge your NodeJS with Rust

12

@skwee357 @kudmitry



What about Performance?
🚀 Supercharge your NodeJS with Rust

13

@skwee357 @kudmitry

30th Fibonacci 44th Fibonacci 45th Fibonacci 46th Fibonacci

JavaScript (NodeJS) 165.2ms 5.846s 9.358s 15.038s

Native Rust 161.5ms (+2.23%) 2.271s (+61.15%) 3.578s (+61.76%) 5.721s (+61.95%)

Rust WASM 163ms (+1.33%) 3.286s (+43.79%) 5.207s (+44.35%) 8.317s (+44.69%)

Run with Hyperfine tool, each run of Fibonacci was run with 3 warmups, taking the mean running time

Conclusion 1: Rust increases performance by ~60%. WASM by ~45%. (Compared to NodeJS)

Conclusion 2: Rust is ~45% faster than WASM

Note: Benchmarks like this are useless. Always run your own benchmarks



So… Native Modules or 
WASM?

🚀 Supercharge your NodeJS with Rust

14

@skwee357 @kudmitry



Native modules or WASM?
🚀 Supercharge your NodeJS with Rust

15

@skwee357 @kudmitry

● Native is always faster than VM (look at C/C++ vs Java)
● But WASM is still pretty fast!

Performance: Native Modules



● Native library can be reused via FFI in other languages (Java, Swift)
● WASM is portable only across WASM VMs

Native modules or WASM?
🚀 Supercharge your NodeJS with Rust

16

@skwee357 @kudmitry

Reusability: It’s Complicated



● WASM (bindgen) automatically converts basic types (i32, i64, f32, f64)
● NEON needs a “glue” layer to convert between Rust and JS

Native modules or WASM?
🚀 Supercharge your NodeJS with Rust

17

@skwee357 @kudmitry

Ergonomics: WASM



● WASM doesn’t have access to stdlib - so no filesystem, networking or 
anything OS related

● Unless you have WASI (WebAssembly System Interface) which is still in 
development

Native modules or WASM?
🚀 Supercharge your NodeJS with Rust

18

@skwee357 @kudmitry

stdlib: Native Modules (or wait for WASI)



● Native Modules are host machine dependant
● WASM is run by a VM

Native modules or WASM?
🚀 Supercharge your NodeJS with Rust

19

@skwee357 @kudmitry

I don’t know, it works on my machine - said every developer

Portability: WASM



● Native Modules can’t be used in the Browser. JavaScript has no support 
for FFI
○ NodeJS uses N-API to build native modules with stable ABI

● WASM can be run if there is a WASM VM (so NodeJS + all browsers, 
except for IE )

Native modules or WASM?
🚀 Supercharge your NodeJS with Rust

20

@skwee357 @kudmitry

NodeJS vs Browser: It’s complicated



Native modules or WASM? - Conclusion
🚀 Supercharge your NodeJS with Rust

21

@skwee357 @kudmitry

Performance Rust Native Modules

Reusability It’s complicated

Ergonomics WASM

stdlib Rust Native Modules

Portability WASM

NodeJS vs Browser It’s Complicated

Native modules are meant to 
extend NodeJS with performant 
code

WASM meant to replace non 
performant JS pieces of code



🚀 Supercharge your NodeJS with Rust

22

@skwee357

@kudmitry

Thank you!

@skwee357


