& Supercharge your
NodedS with Rust

..........

(/‘ ® - | Dmitry Kudryavtsev
.- Senior Software Engineer @ Forter / ex-Autodesk
" https://yieldcode.blog

Supercharge your NodeJS with Rust

‘ R
Js)
JS What the... @

JavaScript?!

Supercharge your NodeJS with Rust

JavaScript and NodedJsS are great

For some operations

But they are also slow

Native Modules in C/C++ or Rust

@skwee357 in @kudmitry

Supercharge your NodeJS with Rust

But why Rust?

@skwee357

Why not C/C++?

They show their age
They lack modern
tooling (decent
dependency
manager, relatively
poor stdlib)

They are not memory
safe (segfaults @)

Why Rust?

in @kudmitry

Strongly typed &
Compiled

Rich stdlib: smart
pointers, containers,
iterators...

Modern tooling:
Cargo

Memory safe (no
segfaults &)

Supercharge your NodeJS with Rust

Great and all... But...
How?

@skwee357 in @kudmitry

Supercharge your NodeJS with Rust

Meet NEON. Node native
modules with Rust

NEON

Electrify your Node with the power of Rust!

Supercharge your NodeJS with Rust

src/lib.rc

Require the needed code from
Neon

The Fibonacci Logic

A “glue” layer between JS and Rust

The “export” of Rust function into
JS world

W @skwee357 in @kudmitry

use neon::context::{Context, ModuleContext, FunctionContext};
use neon::types::JsNumber;

use neon::result::JsResult;

use neon::result::NeonResult;

fn fibonacci(n: i32) -> i32 {
return match n {
nifn<1=>29,
n if'n <= 2'=>1,
_ => fibonacci(n - 1) + fibonacci(n - 2)

1
i

fn fibonacci_api(mut cx: FunctionContext) —> JsResult<JsNumber> {
let handle = cx.argument::<JsNumber>(0).unwrap();
let res = fibonacci(handle.value(&mut cx) as i32);
0k (cx.number(res))

b

#[neon::main]

fn main(mut cx: ModuleContext) —> NeonResult<()> {
cx.export_function("fibonacci_rs", fibonacci_api)?;
0k(())

¥

Supercharge your NodeJS with Rust

Building the Rust Module

cargo-cp-artifact -nc index.node -- cargo build
--message-format=json-render-diagnostics

4

A dynamic library file (.dll / .so equivalent from C/C++
under Windows / *nix)

W @skwee357 in @kudmitry

Supercharge your NodeJS with Rust

How to call from NodedS

const {fibonacci_rs} = require("./index.node");

const value = process.argv[2] || null;
const number = parseInt(value);

if(isNaN(number)) {

console. log("Provided value is not a number");
return,

const result = fibonacci_rs(number);
console. log(result);

W @skwee357 in @kudmitry

Supercharge your NodeJS with Rust

I've heard something
about so called WASM...

@skwee357 in @kudmitry

Supercharge your NodeJS with Rust

What is WASM / Web Assembly?

WebAssembly

e Portable Binary Format
o And corresponding text format
Executed by VM
Supported in all major browsers (and NodeJS)
Can be written in AssemblyScript
A compilation target for other Languages (Rust among
them)

@skwee357 in @kudmitry

use wasm_bindgen::prelude::*;

#[wasm_bindgen]
fn fibonacci(n: 1i32) -> i32 {
return match n {
it'n <1 = 8,
if'n == 2 = 1,
=> fibonacci(n - 1) + fibonacci(n - 2)

1
2
3
4
5
6
7
8
9

=
()

Supercharge your NodeJS with Rust

What about Performance?

30th Fibonacci

44th Fibonacci

45th Fibonacci

46th Fibonacci

JavaScript (NodeJS) 165.2ms 5.846s 9.358s 15.038s
Native Rust 161.5ms (+2.23%) | 2.271s (+61.15%) | 3.578s (+61.76%) | 5.721s (+61.95%)
Rust WASM 163ms (+1.33%) 3.286s (+43.79%) | 5.207s (+44.35%) | 8.317s (+44.69%)

Run with Hyperfine tool, each run of Fibonacci was run with 3 warmups, taking the mean running time

Conclusion 1: Rust increases performance by ~60%. WASM by ~45%. (Compared to NodeJS)

Conclusion 2: Rust is ~45% faster than WASM

Note: Benchmarks like this are useless. Always run your own benchmarks

W @skwee357 in @kudmitry

13

Supercharge your NodeJS with Rust

So... Native Modules or
WASM?

@skwee357 in @kudmitry

Supercharge your NodeJS with Rust

Native modules or WASM?
Performance:; Native Modules

e Native is always faster than VM (look at C/C++ vs Java)
e But WASM is still pretty fast!

@skwee357 in @kudmitry

15

Supercharge your NodeJS with Rust

Native modules or WASM?

Reusability: It's Complicated

e Native library can be reused via FFI in other languages (Java, Swift)
e WASM is portable only across WASM VMs

@skwee357 in @kudmitry

16

Supercharge your NodeJS with Rust

Native modules or WASM?

Ergonomics: WASM

e WASM (bindgen) automatically converts basic types (i32, i64, 32, f64)
e NEON needs a “glue” layer to convert between Rust and JS

@skwee357 in @kudmitry

17

Supercharge your NodeJS with Rust

Native modules or WASM?

stdlib: Native Modules (or wait for WASI)

e WASM doesn't have access to stdlib - so no filesystem, networking or
anything OS related

e Unless you have WASI (WebAssembly System Interface) which is still in
development

@skwee357 in @kudmitry

18

Supercharge your NodeJS with Rust

Native modules or WASM?

Portability: WASM

I don’t know, it works on my machine - said every developer

e Native Modules are host machine dependant
e WASMisrunbyaVM

@skwee357 in @kudmitry

19

Supercharge your NodeJS with Rust

Native modules or WASM?

NodedS vs Browser: It's complicated

e Native Modules can't be used in the Browser. JavaScript has no support

for FFI
o NodedS uses N-API to build native modules with stable ABI

e WASM can be run if there is a WASM VM (so NodeJS + all browsers,
except for IE &)

20

@skwee357 in @kudmitry

Supercharge your NodeJS with Rust

Native modules or WASM? - Conclusion

Performance Rust Native Modules
Reusability It's complicated
Ergonomics WASM

stdlib Rust Native Modules
Portability VAR

NodeJS vs Browser It's Complicated

W @skwee357 in @kudmitry

Native modules are meant to
extend NodeJS with performant
code

WASM meant to replace non
performant JS pieces of code

21

3" Supercharge your NodeJS with Rust

Thank you!

m @kudmitry

} @skwee357

O @skwee357

