
package Platform Engineering

import "Team Topologies"

type Principles interface

Architect Trouble

Val Yonchev

Cansu Kavili-

Örnek

Why listen to us?

Team what? https://teamtopologies.com/

Let's talk Platforms

<Platforms>

Accelerate the flow of value
AND

Reduce cognitive load within the whole system
AND

Enable substantial autonomy of teams consuming them

</Platforms>

package Platform;

public class Platform team {

/*
* Pay attention! Not what you thought it means
*/

a grouping of other team types, which provide a
compelling internal product to accelerate delivery
of value by Stream-aligned teams

}

 Words of Caution

➔ Team is the smallest unit of delivery (and measurement)

➔ Platforms reduce cognitive load and accelerate flow of value

(or they shouldn't exist)

➔ Thinnest Viable Platform … is the maximum we should develop

➔ Cognitive load drives decisions (team-of-teams design)

➔ Treat the platform as a product

➔ Teams communicate through APIs

➔ Platforms are never intuitive and easy enough

➔ Team Topologies is a VERB, not a label

Principles from
Team Topologies

Principle: Team is the smallest unit of
delivery (and measurement)

DevelopMENT Experience

DevelopER ExperienceX

Principle: Platforms reduce cognitive load
AND accelerate flow of value

(or they shouldn't exist)

Principle: Thinnest Viable Platform … is
the maximum we should develop

Principle: Cognitive load drives decisions
(team-of-teams design)

Principle: Cognitive load drives decisions
(team-of-teams design)

Domain-Driven Design
(Event Storming)

helps define team
boundaries

Wardley
Mapping

helps define
what to build,

what to buy

Principle: Cognitive load drives decisions
(team-of-teams design)

Buy these
(replace own

developed)

Build these
(replace own

developed)

Principle: Treat the Platform as a Product

Principle: Treat the Platform as a Product
>> Serve real needs, real customers

● Who is the customer?
● What does she need?
● What job does your product do for her?
● Can one product serve several different customers

OR do they have different jobs to be done?

Principle: Treat the Platform as a Product
>> Development Degrees of Freedom

Principle: Treat the Platform as a Product
>> Development Degrees of Freedom

"Black box" Services Modifiable ServicesConfigurable Services

“I love that
everything just
works!”

“The platform lets me
experiment and
innovate, and I can
contribute my
enhancements back to
improve it.”

“ I can tweak things the
way I need them.”

● Build/serve one group at a time
● Collaboration interaction pattern precedes

X-as-a-Service

Principle: Treat the Platform as a Product
>> Starts with one team, builds Thinnest

Principle: Treat the Platform as a Product
>> Competition drives progress

● Competition drives progress
● Product use is optional
● Technology evolve and sometimes you need to

switch from in-house to commodity

For your information, there's a lot more to Ogres
than people think… Ogres are like onions.

Onions have layers. Ogres have layers...
Platforms

Platforms

Platforms

package Platform;

public class Platform team {

/*
* Pay attention! Not what you thought it means
*/

a grouping of other team types, which provide a
compelling internal product to accelerate delivery
of value by Stream-aligned teams

}

Principle: Treat the Platform as a Product
>> Platform teams have cognitive load

and needs too

Principle: Treat the Platform as a Product
>> Platform teams have cognitive load

and needs too

Platform
Engineering

Platform
Engineering

Principle: Teams communicate through
Team APIs

Team API Service API

Principle: Platforms Products are never
intuitive or easy enough

X

Principle: Team Topologies is a VERB,
not a label

● Continuous effort
● Not always great results
● New need every day
● Practice - practice - practice

Platform Engineering is the culture of building
platforms services which are:

● Easy to consume
● Reduce cognitive load (of those consuming them)
● Continuously evolved as needs evolve
● Economically viable

Thank you for listening!

cansu@redhat.com
linkedin.com/in/ckavili

val@teamtopologies.com
linkedin.com/in/valyonchev

book time with Val

mailto:cansu@redhat.com
http://linkedin.com/in/ckavili

