
Green Code
or

“Code Green”
Green code refers to environmentally

sustainable programming practices

focused on reducing energy

consumption in software

development. This involves writing

and optimizing code to improve

efficiency, which in turn lowers the

energy needed for processing and

running applications.

Carbon Intensity - Geographically

What are we trying to accomplish?

Fundamental Architectural Principles

• Application and System Performance

• Security

• Cost $$$

• Reliability

• Availability

• Sustainable Software Development
& Operational Practices

Reduce CO2 Footprint

Industry Initiatives - Carbon Emission Standards

• Tools and Frameworks

• Impact Framework

• Carbon Aware SDK

• Specification

• Software Carbon Intensity (SCI)

• SCI = C per R or ((E*L) + M)/R

• E - Energy consumed by software
system

• L – Location based marginal carbon
intensity

• M –Embodied emissions of the
hardware needed to operate a software
system

• R – Functional Unit (Calling an API)

https://github.com/Green-Software-
Foundation/awesome-green-software#general-purpose

Fastest Programming Language - Most Efficient?

Paradigm Languages

Functional Erlang, F#, Haskell, Lisp, Ocaml, Perl, Racket, Ruby, Rust

Imperative Ada, C, C++, F#, Fortran, Go, Ocaml, Pascal, Rust

Object-Oriented
Ada, C++, C#, Chapel, Dart, F#, Java, JavaScript, Ocaml, Perl, PHP,
Python, Racket, Rust, Smalltalk, Swift, TypeScript

Scripting
Dart, Hack, JavaScript, JRuby, Lua, Perl, PHP, Python, Ruby,
TypeScript

Benchmark Description Input

regex-redux Match DNA 8mers and substitute magic patterns fasta output

binary-trees Allocate, traverse and deallocate many binary trees 21

Language Type Description

Compiled Code is translated into machine code before execution

VM (Virtual Machine)

A software environment that simulates a computer, allowing code to
run regardless of the underlying hardware

Interpreted Code is translated line by line at runtime

Energy Efficiency Across Programming Languages
Normalized global results for Energy, Time, and Memory

Possible Carbon Intensity Reduction Solution - Serverless

✓ Containerization

✓ Event –Driven

✓ MicroVMs

✓ Custom Runtime Environments

✓ Performance

✓ Managed

Possible Carbon Intensity Reduction Solution - WASM

Portability: Wasm is designed to run on any platform that supports
the WebAssembly runtime, making it highly portable and ideal for
cross-platform applications.

Performance: Wasm runs at near-native speed, which is crucial for
performance-sensitive applications, especially on edge devices with
limited resources.

Security: Wasm provides a secure execution environment by running
code in a sandboxed environment, which helps protect against
malicious code.

Resource Efficiency: Wasm's compact binary format allows for
efficient transmission and execution of code, reducing bandwidth and
storage requirements.

Possible Carbon Intensity Reduction Solution - GraalVM

Polyglot Capabilities: GraalVM supports multiple
programming languages, including Java, JavaScript, Ruby,
Python, and LLVM-based languages. This makes it a versatile
tool for developers working with different languages.

Performance: GraalVM offers advanced Just-In-Time (JIT)
compilation and Ahead-Of-Time (AOT) compilation, which can
significantly improve the performance of applications.

Native Image: GraalVM's Native Image feature allows for the
creation of small, self-contained binaries that start up quickly
and use less memory, which is beneficial for reducing energy
consumption and carbon emissions.

Interoperability: GraalVM enables seamless interoperability
between different languages, allowing developers to use the
best tools and libraries for their specific needs.

Effective DevOps Strategies

✓ Efficient Resource Utilization

✓ Cloud Migration

✓ Green Software Practices

✓ Monitoring and Reporting

✓ Collaboration and Innovation

References

Background Image credit: Oseloka Obiora, RiverSafe
https://app.electricitymaps.com/map
https://greensoftware.foundation
https://sci.greensoftware.foundation
https://demo.cloudcarbonfootprint.org
https://github.com/Green-Software-Foundation/awesome-green-
software#general-purpose
https://sites.google.com/view/energy-efficiency-languages/results
https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf
https://www.fermyon.com/spin
https://www.graalvm.org
https://www.datacenterdynamics.com/en/news/only-13-of-provisioned-cpus-and-

20-of-memory-utilized-in-cloud-computing-report

https://squaredup.com/dashboard-gallery/scom-server-monitoring-dashboard

https://app.electricitymaps.com/map
https://greensoftware.foundation/
https://sci.greensoftware.foundation/
https://demo.cloudcarbonfootprint.org/
https://github.com/Green-Software-Foundation/awesome-green-software#general-purpose
https://github.com/Green-Software-Foundation/awesome-green-software#general-purpose
https://sites.google.com/view/energy-efficiency-languages/results
https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf
https://www.fermyon.com/spin
https://www.graalvm.org/
https://www.datacenterdynamics.com/en/news/only-13-of-provisioned-cpus-and-20-of-memory-utilized-in-cloud-computing-report
https://www.datacenterdynamics.com/en/news/only-13-of-provisioned-cpus-and-20-of-memory-utilized-in-cloud-computing-report
https://squaredup.com/dashboard-gallery/scom-server-monitoring-dashboard

	Slide 1: Green Code or “Code Green”
	Slide 2: Carbon Intensity - Geographically
	Slide 3: What are we trying to accomplish?
	Slide 4: Industry Initiatives - Carbon Emission Standards
	Slide 5: Fastest Programming Language - Most Efficient?
	Slide 6: Energy Efficiency Across Programming Languages
	Slide 7: Possible Carbon Intensity Reduction Solution - Serverless
	Slide 8: Possible Carbon Intensity Reduction Solution - WASM
	Slide 9: Possible Carbon Intensity Reduction Solution - GraalVM
	Slide 10: Effective DevOps Strategies
	Slide 11: References

