

Carbon Intensity - Geographically

What are we trying to accomplish?

Reduce CO2 Footprint

Fundamental Architectural Principles

Application and System Performance
Security

Cost $$%

Reliability

Availability

Sustainable Software Development
& Operational Practices

Industry Initiatives - Carbon Emission Standards

Green
\“I’j Software
Foundation

 Tools and Frameworks Emissions Breakdown Region -~

® I m paCt Framewo rk Low carbon intensity High carbon intensiz

» Carbon Aware SDK

* Specification

« Software Carbon Intensity (SCI)
 SCI =CperRor ((E*L) + M)/R

* E - Energy consumed by software
system

* L — Location based marginal carbon
intensity

* M —Embodied emissions of the
hardware needed to operate a software
system

* R — Functional Unit (Calling an API)

Fastest Programming Language - Most Efficient?

Paradigm Languages
Functional Erlang, F#, Haskell, Lisp, Ocaml, Perl, Racket, Ruby, Rust
Imperative Ada, C, C++, F#, Fortran, Go, Ocaml, Pascal, Rust

Benchmark Description Input
regex-redux Match DNA 8mers and substitute magic patterns fasta output
binary-trees Allocate, traverse and deallocate many binary trees 21

Language Type Description
Compiled Code is translated into machine code before execution

Object-Oriented

Ada, C++, C#, Chapel, Dart, F#, Java, JavaScript, Ocaml, Perl, PHP,
Python, Racket, Rust, Smalltalk, Swift, TypeScript

VM (Virtual Machine)

A software environment that simulates a computer, allowing code to
run regardless of the underlying hardware

Scripting

Dart, Hack, JavaScript, JRuby, Lua, Perl, PHP, Python, Ruby,
TypeScript

Interpreted

Code is translated line by line at runtime

Regex Redux Benchmark

Energy Efficiency Across Programming Languages

Normalized global results for Energy, Time, and Memory

Possible Carbon Intensity Reduction Solution - Serverless

v' Containerization

v' Event -Driven

v' MicroVMs

v' Custom Runtime Environments
v" Performance

v Managed

Possible Carbon Intensity Reduction Solution - WASM

Possible Carbon Intensity Reduction Solution - GraalVM

B 0

Low Resource Usage Improved Security

Nafive executables use only a fraction of memory and CPU resources Native executables contain only the classes, meihods, and fields that
required by a JVM, which improves ufilization and reduces costs. your application needs, which reduces attack surface area.

o B

Fast Startup Compact Packaging

Nafive executables compiled ahead of ime start up instantly and require Nafive executables are small and offer a range of linking options that
no warmup fo run at peak performance. make them easy to deploy in minimal container images.

Supported by Frameworks Supported by Leading Cloud Platforms

Popular frameworks such as Spring Boat, Micronaut, Helidon, and SDKs from leading cloud platiorms such as AWS, Microsoft Azure, GCP
Quarkus provide first-class support for GraalVM. and Oracle Cloud Infrasfructure inegrate and support GraalVM.

Effective DevOps Strategies

v’ Efficient Resource Utilization
v' Cloud Migration

v Green Software Practices

v" Monitoring and Reporting

v' Collaboration and Innovation

References

Background Image credit: Oseloka Obiora, RiverSafe
https://app.electricitymaps.com/map

https://greensoftware.foundation

https://sci.greensoftware.foundation

https://demo.cloudcarbonfootprint.org
https://github.com/Green-Software-Foundation/awesome-green-
software#general-purpose
https://sites.google.com/view/energy-efficiency-languages/results
https://areenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf
https://www.fermyon.com/spin

https:.//www.graalvm.org
https://www.datacenterdynamics.com/en/news/only-13-of-provisioned-cpus-and-
20-of-memory-utilized-in-cloud-computing-report
https://squaredup.com/dashboard-gallery/scom-server-monitoring-dashboard

https://app.electricitymaps.com/map
https://greensoftware.foundation/
https://sci.greensoftware.foundation/
https://demo.cloudcarbonfootprint.org/
https://github.com/Green-Software-Foundation/awesome-green-software#general-purpose
https://github.com/Green-Software-Foundation/awesome-green-software#general-purpose
https://sites.google.com/view/energy-efficiency-languages/results
https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf
https://www.fermyon.com/spin
https://www.graalvm.org/
https://www.datacenterdynamics.com/en/news/only-13-of-provisioned-cpus-and-20-of-memory-utilized-in-cloud-computing-report
https://www.datacenterdynamics.com/en/news/only-13-of-provisioned-cpus-and-20-of-memory-utilized-in-cloud-computing-report
https://squaredup.com/dashboard-gallery/scom-server-monitoring-dashboard

	Slide 1: Green Code or “Code Green”
	Slide 2: Carbon Intensity - Geographically
	Slide 3: What are we trying to accomplish?
	Slide 4: Industry Initiatives - Carbon Emission Standards
	Slide 5: Fastest Programming Language - Most Efficient?
	Slide 6: Energy Efficiency Across Programming Languages
	Slide 7: Possible Carbon Intensity Reduction Solution - Serverless
	Slide 8: Possible Carbon Intensity Reduction Solution - WASM
	Slide 9: Possible Carbon Intensity Reduction Solution - GraalVM
	Slide 10: Effective DevOps Strategies
	Slide 11: References

