

Green Code or "*Code Green*"

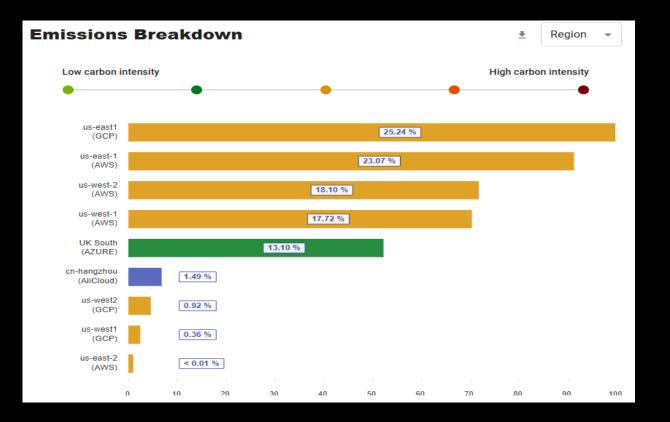
Green code refers to environmentally sustainable programming practices focused on reducing energy consumption in software development. This involves writing and optimizing code to improve efficiency, which in turn lowers the energy needed for processing and running applications.

Carbon Intensity - Geographically

What are we trying to accomplish?

Reduce CO2 Footprint

Fundamental Architectural Principles


- Application and System Performance
- Security
- Cost \$\$\$
- Reliability
- Availability
- Sustainable Software Development & Operational Practices

Industry Initiatives - Carbon Emission Standards

- Tools and Frameworks
 - Impact Framework
 - Carbon Aware SDK
- Specification
 - Software Carbon Intensity (SCI)
 - SCI = C per R or $((E^{L}) + M)/R$
 - E Energy consumed by software system
 - L Location based marginal carbon intensity
 - M Embodied emissions of the hardware needed to operate a software system
 - R Functional Unit (Calling an API)

https://github.com/Green-Software-Foundation/awesome-green-software#general-purpose

Fastest Programming Language - Most Efficient?

Benchmark	Description	Input	
regex-redux	Match DNA 8mers and substitute magic patterns	fasta output	
binary-trees	Allocate, traverse and deallocate many binary trees	21	

Language Type	Description
Compiled	Code is translated into machine code before execution
	A software environment that simulates a computer, allowing code to run regardless of the underlying hardware
Interpreted	Code is translated line by line at runtime

0.03 0.05 0.037

700

000

500

400

300

200

100

-0

3

binary-trees

Compiled

e.

CPU Energy DRAM Energy

. 0.035

18000

16000

14000

12000

00.08

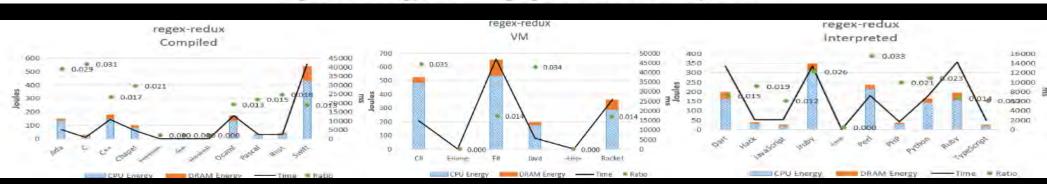
60.00

401903

2000

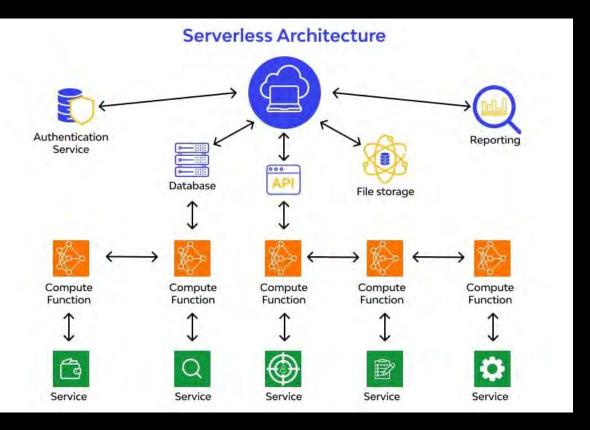
1900

E 00001


.0.035

-Time #Ratio

Paradigm	Languages						
Functional	Erlang, F#, Haskell, Lisp, Ocaml, Perl, Racket, Ruby, Rust						
Imperative	Ada, C, C++, F#, Fortran, Go, Ocaml, Pascal, Rust						
Object-Oriented	Ada, C++, C#, Chapel, Dart, F#, Java, JavaScript, Ocaml, Perl, PHP, Python, Racket, Rust, Smalltalk, Swift, TypeScript						
Scripting	Dart, Hack, JavaScript, JRuby, Lua, Perl, PHP, Python, Ruby, TypeScript						


Figure 1. Energy and time graphical data for binary-trees

Regex Redux Benchmark

Energy Efficiency Across Programming Languages

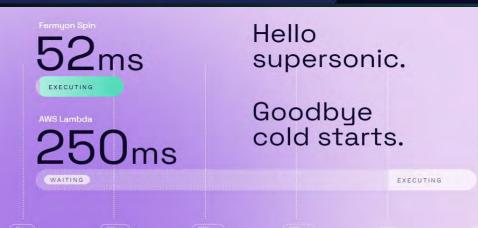
Table 1. CLBG corpus of programs.			Normalized global results for Energy, Time, and Memory						Table 5. Pareto optimal sets for different combination of objectives.			
Benchmark	Description	Input		Energy		Time		Mb	Time & Memory	Energy & Time	Energy & Memory	Energy & Time & Memory
n-body	Double precision N-body simulation	50M	(c) C	1.00	(c) C	1.00	(c) Pascal	1.00	C • Pascal • Go Rust • C++ • Fortran	C Rust	C • Pascal Rust • C++ • Fortran • Go	C • Pascal • Go Rust • C++ • Fortran
fannkuch- redux	Indexed access to tiny integer sequence	12	(c) Rust (c) C++ (c) Ada	1.34 (c) C++ 1.70 (c) Ada 1.98 (v) Java		1.04 1.56	(c) Go (c) C	1.05 1.17	Ada Java • Chapel • Lisp • Ocaml Haskell • C# Swift • PHP F# • Racket • Hack • Python I JavaScript • Ruby For Dart • TypeScript • Erlang JRuby • Perl Lua	C++ Ada Java Pascal • Chapel Lisp • Ocaml • Go Fortran • Haskell • C# Swift Dart • F# JavaScript Racket TypeScript • Hack	Ada Java • Chapel • Lisp OCaml • Swift • Haskell C# • PHP Dart • F# • Racket • Hack • Python JavaScript • Ruby TypeScript Erlang • Lua • Perl JRuby	Ada Java • Chapel • Lisp • Ocaml Swift • Haskell • C# Dart • F# • Racket • Hack • PHP
spectral- norm	Eigenvalue using the power method	5,500			(c) Ada	1.85	5 (c) Fortran	1.24 1.34 1.47				
mandelbrot	Generate Mandelbrot set portable bitmap file	16,000	(v) Java (c) Pascal		(v) Java (c) Chapel	1.89 2.14	(c) C++ (c) Ada					
pidigits	Streaming arbitrary precision arithmetic	10,000	(c) Chapel	2.18	(c) Go	2.83	(c) Rust	1.54				
regex-redux	Match DNA 8mers and substitute magic patterns	fasta output	(v) Lisp (c) Ocaml	2.27 2.40	(c) Pascal (c) Ocaml	3.02 3.09	(v) Lisp (c) Haskell	1.92 2.45				
fasta	Generate and write random DNA sequences	25M	(c) Fortran (c) Swift	2.52 2.79	(v) C# (v) Lisp	3.14 3.40	(i) PHP (c) Swift	2.57 2.71				
k-nucleotide	Hashtable update and k-nucleotide strings	fasta output	(c) Haskell	3.10	(c) Haskell	3.55	(i) Python	2.80		PHP Erlang		
reverse- complement	Read DNA sequences, write their reverse-complement	fasta output	(v) C# (c) Go	Go 3.23 (c) Fortran Dart 3.83 (v) F#	4.20 4.20	(c) Ocaml (v) C#	2.82 2.85		Lua • JRuby Ruby			
binary-trees	Allocate, traverse and deallocate many binary trees	21	(i) Dart		6.30	(i) Hack	3.34					
chameneos- redux	Symmetrical thread rendezvous requests	6M	 (v) F# (i) JavaScript (v) Racket (i) TypeScript (i) Hack 	4.13 4.45	(i) JavaScript (i) Dart	6.52 6.67	(v) Racket (i) Ruby (c) Chapel	3.52 3.97				
meteor- contest	Search for solutions to shape packing puzzle	2,098		7.91	(v) Racket	11.27		4.00				
thread-ring	Switch from thread to thread passing one token	50M		(i) TypeScript 21.50 (i) Hack 24.02	(i) Hack (i) PHP	26.99 27.64	(v) F# (i) JavaScript	4.25 4.59				
			 (i) PHP (v) Erlang (i) Lua (i) Jruby (i) Ruby (i) Python (i) Perl 	29.30 42.23 45.98 46.54 69.91 75.88 79.58	 (v) Erlang (i) Jruby (i) TypeScript (i) Ruby (i) Perl (i) Python (i) Lua 	36.71 43.44 46.20 59.34 65.79 71.90 82.91	 (i) TypeScript (v) Java (i) Perl (i) Lua (v) Erlang (i) Dart (i) Jruby 	4.69 6.01 6.62 6.72 7.20 8.64 19.84				

Possible Carbon Intensity Reduction Solution - Serverless

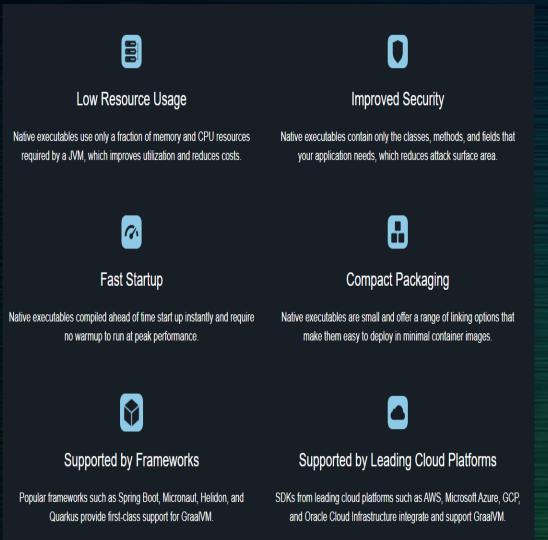
- ✓ Containerization
- ✓ Event Driven
- ✓ MicroVMs
- ✓ Custom Runtime Environments
- ✓ Performance
- ✓ Managed

Possible Carbon Intensity Reduction Solution - WASM

app.wasm


typical app image 200MB+

Portability: Wasm is designed to run on any platform that supports the WebAssembly runtime, making it highly portable and ideal for cross-platform applications.


Performance: Wasm runs at near-native speed, which is crucial for performance-sensitive applications, especially on edge devices with limited resources.

Security: Wasm provides a secure execution environment by running code in a sandboxed environment, which helps protect against malicious code.

Resource Efficiency: Wasm's compact binary format allows for efficient transmission and execution of code, reducing bandwidth and storage requirements.

Possible Carbon Intensity Reduction Solution - GraalVM

Polyglot Capabilities: GraalVM supports multiple programming languages, including Java, JavaScript, Ruby, Python, and LLVM-based languages. This makes it a versatile tool for developers working with different languages.

Performance: GraalVM offers advanced Just-In-Time (JIT) compilation and Ahead-Of-Time (AOT) compilation, which can significantly improve the performance of applications.

Native Image: GraalVM's Native Image feature allows for the creation of small, self-contained binaries that start up quickly and use less memory, which is beneficial for reducing energy consumption and carbon emissions.

Interoperability: GraalVM enables seamless interoperability between different languages, allowing developers to use the best tools and libraries for their specific needs.

Effective DevOps Strategies

- ✓ Efficient Resource Utilization
- ✓ Cloud Migration
- ✓ Green Software Practices
- ✓ Monitoring and Reporting
- ✓ Collaboration and Innovation

References

Background Image credit: Oseloka Obiora, RiverSafe

https://app.electricitymaps.com/map https://greensoftware.foundation https://sci.greensoftware.foundation https://demo.cloudcarbonfootprint.org https://github.com/Green-Software-Foundation/awesome-greensoftware#general-purpose https://sites.google.com/view/energy-efficiency-languages/results https://greenlab.di.uminho.pt/wp-content/uploads/2017/10/sleFinal.pdf https://www.fermyon.com/spin https://www.graalvm.org https://www.datacenterdynamics.com/en/news/only-13-of-provisioned-cpus-and-20-of-memory-utilized-in-cloud-computing-report https://squaredup.com/dashboard-gallery/scom-server-monitoring-dashboard