
Building a more robust Apache
APISIX Ingress controller with
Litmus Chaos

Jintao Zhang

Who am I
I'm Jintao

Apache APISIX PMC

Kubernetes Ingress-NGINX maintainer

Microsoft MVP

https://github.com/tao12345666333

email: zhangjintao@apache.org

https://github.com/tao12345666333

Agenda
Why We Need Chaos Engineering

How to design Chaos experiments for an Ingress controller

How to practice

Benefits and Future

Why We Need

Chaos Engineering

What is Chaos Engineering

"Chaos engineering is the discipline
of experimenting on a software
system in production to build
confidence in the system's capability
to withstand turbulent and
unexpected conditions”

— https://principlesofchaos.org/

https://principlesofchaos.org/

What is chaos engineering

Introduction of disruptive events
A. Types of Disruptive Events:

Chaos engineering can involve a variety of disruptive events, including network partitions, service

degradation, and resource constraints.

B. Purpose of Introducing Disruptive Events:

Determine the impact on the system and identify any vulnerabilities or weaknesses.

Testing system resilience
A. Importance of Testing System Resilience in Real-World
Scenarios:

This can help ensure that systems are robust and scalable, and can withstand unexpected challenges

and conditions.

B. Methods for Measuring the Impact of Disruptive Events on
System Resilience:

Including monitoring system logs, performance metrics, and user experience etc.

Discovering hidden problems
A. Common Hidden Problems in Distributed Systems:

Including data loss, performance bottlenecks, and communication errors etc.

B. Advantages of Discovering Hidden Problems Before They
Impact Production:

It can help prevent downtime, reduce the risk of data loss, and ensure the system continues to

operate smoothly.

What it's worth and why we need it

Distributed systems are complex

No confidence without testing

Mistakes cost time and lost customers

How to design

Chaos experiments

for an Ingress controller

What is Ingress

A resource object

Contains routing rules

What is Ingress controller

Watching Ingress resources

and translate to actual

proxy configuration

Extended Ingress

Semantics

Support other routing rule

definitions (Gateway API,

CRD)

What is Apache APISIX Ingress
Using Apache APISIX as the data plane, providing nearly 100 built-in plugins

Support three configuration methods

Ingress

Gateway API

CRD

Separation of control plane and data plane provides flexible deployment methods and reduces

security issues

Supports integration with external service discovery components

What is Apache APISIX Ingress

What is LitmusChaos
Open Source Chaos Engineering platform

CNCF Incubating Project

Built-in basic functions required for various

experiments

Chaos Observability

How to design Chaos experiments

Define the
system under

test

Choose the
right

experiment

Establish a
hypothesis

Run the
experiment

Evaluate the
results

Ingress Controller usage scenarios
Proxy traffic

Proxy traffic

Proxy traffic

And some other functions

Define the system under test

kube-apiserver: if an exception occurs, the Ingress resource write failed.

Ingress-controller: Network interruption, Crash, Pod faults, I/O

data-plane: Network interruption, Crash, Pod faults, I/O

Choose the right experiment
Exception configuration already covered by e2e

Enter the system after the configuration is written successfully

So only need to test Ingress controller and data-plane

When the Ingress controller network is interrupted, can the data-plane proxy requests

normally?

When the Ingress controller Pod is killed, can the data-plane proxy requests normally?

DNS error

…

Establish a hypothesis
When the Ingress-controller Pod get <X?>, the client's request can still get

a normal response.

Run the experiment
Litmus provides several ways to configure experiments

Using ChaosCenter Portal

Using YAML manifest

Evaluate the results
Built-in statistics report

Integration with Prometheus and Grafana

Benefits and Future
Help us build confidence. Now we have many production users.

Found a bug that the configuration becomes invalid after the ingress-controller Pod is restarted
multiple times

GitHub

bug: resolveGranularity: service fails, when…

I found that resolveGranularity: service no longer takes

effect after multiple restarts of the APISIX Ingress…

https://github.com/apache/apisix-ingress-controller/issues/870

Benefits and Future
Introduce chaos experiments based on Litmus into the CI pipeline

Provide reference documents and examples for users

Thanks!
Twitter: @zhangjintao9020

GitHub: https://github.com/tao12345666333

https://github.com/tao12345666333

