
© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building confidence through
chaos engineering on AWS

Naren Gakka (he/him)
Solutions Architect
AWS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

1 2

3 4

Chaos engineering
(CE) introduction

Continuous resilience (CR)

Chaos engineering
resources

Building a CR/CE program

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Introduction to
chaos engineering

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering is about
building a culture of resilience
in the presence of unexpected
system outcomes.

Principles of chaos engineering
principlesofchaos.org

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering a different perspective

production

not a
bout b

lowing up

Chaos engineering is

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering a different perspective

S H A R E D R E S P O N S I B I L I T Y M O D E L F O R R E S I L I E N C E

What you have no control over

What you have control over

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering a different perspective

observability

Chaos engineering leads to improved

operational
readiness resilience

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Fail-safe chaos experiments

Perform controlled experiments in which
the assumption is that the load or faults
that you inject will be tolerated by the

system and are fail-safe.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How much confidence do you have in your
system?

Service

CacheDB

LB

Service

CacheDB

AZ1 AZ2

Region 1

Service

CacheDB

LB

Service

CacheDB

AZ1 AZ2

Region 2
DNS

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why chaos engineering?

“Good intentions don’t work, mechanisms do.”
– Jeff Bezos, founder of Amazon

Resilience event/outage Continous resilience/chaos engineering
Resilience

Technical debt

Security posture

Cost efficiency

Trade offs

Baseline

Recurrent operational cost One time investment with maintenance

Risk/waste
exposure

Expensive
overhead

+
Cost of

opportunity

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://github.com/ldomb/ChaosEngineeringPublicStories

Financial Services Health Care Insurance

Media & Entertainment Telco Retail

Transport/Airlines Hospitality Food/Delivery

Chaos engineering stories

https://github.com/ldomb/ChaosEngineeringPublicStories

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering adoption 2023

40% Will adopt chaos engineering as part of their DevOps initiatives in 2023

20%Reducing unplanned downtime by

Source: The I&O Leader’s Guide to Chaos Engineering by Gartner

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering prerequisites

Prerequisite 1:

Basic monitoring/observability

Prerequisite 2:

Organizational awareness

Prerequisite 3:

Real world events/faults

Prerequisite 4:

Remediate findings

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prerequisite 1: Basic monitoring/observability

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Find the needle in

the haystack

Observability

Prerequisite 1: Basic monitoring/observability

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

inner workings

any system state

observing

unusual

The 3 pillars of observability

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prerequisite 1: Basic monitoring/observability

Top level observability

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prerequisite 1: Basic monitoring/observability

User monitoringApplication monitoring

https://aws.amazon.com/blogs/mt/an-observability-journey-with-amazon-cloudwatch-rum-evidently-and-servicelens/

https://aws.amazon.com/blogs/mt/an-observability-journey-with-amazon-cloudwatch-rum-evidently-and-servicelens/

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prerequisite 2: Organizational awareness

Education

Experiment Catalog

Learnings

Central drives
• Experiment type
• Environment
• Self-service
• Guardrails
• Game Day
• Automated
• Resilience

• Experiment type
• Environment
• Self-service
• Guardrails
• Game Day
• Automated
• Resilience

D
ec

en
tr

al
iz

ed
ex

ec
ut

io
n

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prerequisite 3: Real-world experiments

Code &
configuration
e.g., bad deployment,

cred expiration,
host shutdown

Infrastructure
e.g., datacenter failure,

hardware failure

Data and state
e.g., data corruption,

overload

Highly unlikely, but
technically feasible
e.g., physical loss of an entire
Region, the internet is down

Zom
b ie

A po c a ly
p s e

'im a g e : F la t i c o n .c o m

Dependencies
e.g., third-party

integrations, AWS services

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prerequisite 4: Remediate the findings

• Findings through chaos engineering experiments should be prioritized based on
the level of impact they may cause

• Findings that involve the resilience or security of your workload should have
priority over new features, as if not addressed timely, can impact your
customers

• Find an executive sponsor that can help you address the priority if needed

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Continuous resilience

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

STEADY
STATE

HYPOTHESIS

RUN
EXPERIMENT

VERIFY

IMPROVE

Continuous resilience flywheel by Adrian Hornsby

Continuous resilience

Gain
confidence in
your systems
capability to

withstand
component

failures

Code &
configuration
e.g. bad deployment,

cred expiration

Infrastructure
e.g. datacenter failure,

hardware failure

Data and state
e.g. data corruption

Dependencies
e.g. third-party

integrations, AWS services

Highly unlikely, but
technically feasible
e.g. physical loss of an entire
Region, the internet is down

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Building a chaos engineering /
continuous resilience program

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Setting expectations

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E . C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S .

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Setting expectations

Roles and
responsibilitiesProject plan Contribution Outcome

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Selecting the target workload

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E . C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S .

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Target workload selections

For your first experiment, choose
a workload that if degraded has
only minimal to no impact to your
internal or external customers.

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos experiment discovery

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E . C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S .

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos experiment discovery

Fix known issues before
moving forward with

the experiment!
Well-

Architected
Review

Operational
readiness

review

Observability

Runbooks

Incident
responseCircuit breakers

Retries

Failover

Health checks

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Define experiment

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E . C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S .

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos experiment definition – Failure modes

La
te

nc
y

/
Ji

tt
er

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos experiment definition - Experiment #1
B R O W N O U T

180

Offered Throughput (TPS)

Re
sp

on
se

 T
im

e
(m

s)

200

140

160

100

120

80
60

40

20
0

Brownout

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos experiment definition - Steady state

Payments – Transactions per second

Retail – Order per second

Streaming – Stream starts per second

Media/Audio – Playback event started

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos experiment definition - Hypothesis

At a rate of 300 TPS, if 40% of the nodes in the EKS node-group are
terminated, the Transaction Create API continues to serve the 99th
percentile of requests in under 100 ms (steady state)

The EKS nodes will recover within 5 minutes, and pods will get
scheduled and process traffic within 8 minutes after the initiation of
the experiment

Alerts will fire within 3 minutes

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos experiment definition – Bring all together
T E M P L A T E

Workload Name

Chaos Experiment

Realtime Payments

Action

Brownout - Terminate 40% nodes

Environment

Staging

Duration

30 minutes

Load

300 TPS

Targets

Amazon EKS Payments Cluster

Fault isolation boundary

Some clients calls will time out

Stop Condition

CW Alarm when node count < 60%

Rollback

CFN template to built nodes

Observability / Logging

OpenSearch/CWL/X-ray

Hypothesis

At a rate of 300 TPS, If 40% …

Findings

COE – Actions to mitigate fault

Resource Tag/ID/Filter

Chaos-ready

Contribution

Resilience

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prime the environment for the experiment

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E ; C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Run action against target(s)

Steady-state hypothesis within tolerance? Stop condition/Roll back

No deviations found

Is the system healthy?

Deviations found Experiment aborted

Fi
x

an
d

re
pe

at

Re
pe

at

Chaos experiment execution flow

Is control/experimental group defined?

Is the experiment valid?

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Yes

Steady-state hypothesis within tolerance?

Generate load against target(s)

Yes

No

No

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Controlled experiments through canary
deployments in lower-level environment

Amazon
Route 53

Elastic Load
Balancing

Target group
WITHOUT the

Chaos
Experiment

Target group
WITH the

Chaos
Experiment

Requests

Compute

Database

Compute

Verify that both groups are healthy before moving forward

Synthetic
Load

Generation

Source: https://medium.com/@adhorn/chaos-engineering-q-a-how-to-safely-inject-failure-ced26e11b3db

https://medium.com/@adhorn/chaos-engineering-q-a-how-to-safely-inject-failure-ced26e11b3db

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Run the experiment in development/staging

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E ; C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Fault Injection
Actions

• Stop, reboot, and terminate instance(s) (Amazon EC2)

• API throttling/internal error/unavailable error (Amazon EC2)

• Increased memory or CPU load (Amazon EC2)

• Kill process (Amazon EC2)

• Latency injection (Amazon EC2)

• Drain container instances (Amazon ECS)

• Terminate task (Amazon ECS)

• Increase memory or CPU consumption per task (Amazon ECS)

• Terminate node group instances (Amazon EKS)

• Litmus Chaos/Chaos Mesh integration (Amazon EKS)

• Network Connectivity Disruption (Amazon EC2)

• Database stop, reboot, and failover (Amazon RDS)

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

• Systems manager send command (SSM Agent)

• Increased memory or CPU load (Amazon EC2)

• Kill process (Amazon EC2)

• Latency injection (Amazon EC2)

• Increase memory or CPU consumption per task (Amazon EC2)

• Network port blackhole (Amazon EC2)

• Network latency

• Network latency at target source

• Network packet loss

• Network packet loss at target source

AWS Fault Injection
Actions

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Execute the controlled experiment
E X E C U T E T H E C O N T R O L L E D E X P E R I M E N T

AWS Fault Injection
Simulator

Experiment
template

AWS Command
Line Interface

AWS Management
Console

AWS Identity and
Access Management

FIS safeguardsFIS engine

Compute

Start experiment

Third party

Amazon
EventBridge

Amazon
CloudWatch

alarms

AWS resources

Databases Networking StorageCompute

Monitoring

Stop experiment

AWS Fault Injection Simulator

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Establish guardrails in production

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E ; C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Establish guardrails in production

• Run experiments off peak hours

• Validate that your IAM Permissions are sufficient for your experiment in
production

• Validate if your fault isolation boundary is the same as in the lower-level
environment or changes in the production environment

• Decide if synthetic traffic will be generated, or if you are planning to run the
experiment against a subset of your customers

• Validate that observability is in place

• Validate that your runbooks/playbook are up to date in production

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Prime the prod environment for the experiment

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E ; C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Controlled experiments through canary
deployments

Amazon
Route 53

Elastic Load
Balancing

Target group
WITHOUT the

Chaos
Experiment

Target group
WITH the

Chaos
Experiment

Requests

Compute

Database

Compute

Synthetic
load

generation

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Controlled experiments through canary
deployments

Amazon
Route 53

Elastic Load
Balancing

Target group
WITHOUT the

Chaos
Experiment

Target group
WITH the

Chaos
Experiment

Requests

Compute

Database

Compute

Real user
traffic

99%

1%

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Run the experiment in production

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E ; C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Execute the controlled experiment in
production

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Run the experiment in production

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E - I T E R A T E ; C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Post mortem - Correction of error

What did we learn?

How did we communicate

Was everyone needed present? How do we share what we’ve
learned?

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Continuous resilience

Validate
workload
readiness

Setting
expectations

Chaos experiment discovery

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E I T E R A T E ; C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Automate the experiments
A U T O M A T E

AWS
GameDays

Individual
experiments

Scheduled
experiments

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Supporting documents

Validate
workload
readiness

Setting
expectations

Chaos experiment design phase

Experiment
in lower

level
environment

(canary)
Verify

Select
target

workload

Establish
guardrails in
production

Experiment
in

production
(canary)
Verify

Run
experiment

in
production

Correction of
error

Continuous
resilience

(automation)

Define
experiments;

Scope
Steady state;
Hypothesis;
Rollbacks

1 — What happened? (Timeline)
2 — What was the customer impact?
3 — Why did the error occur? (The 5 whys)
4 — What did you learn?
5 — How will you prevent it from happening again in the future?

Ensure
observability/

monitoring
and

playbooks

Address
known-
knowns

Run
experiment

in
dev/staging

P R I O R I T I Z E F I N D I N G S , F I X T H E M , R E I T E R A T E ; C O N T I N U O U S L Y R U N E X P E R I M E N T S A S O F T E N A S W O R K L O A D
N E E D S ; S C A L E M E C H A N I S M T O O T H E R W O R K L O A D S

Introduce the program

Introduction to chaos
engineering

Process journey map defining steps and stakeholders (RACI)

Process maturity
discovery

Chaos engineering
handbook (CEH)

Workload maturity
discovery

Well-architected
review

Chaos experiment template Guardrails
review
assessment

Chaos experiment review

Infrastructure event
management (TAM)

Final report: Next
steps and findings

Interim findings report

CR
Implementation
Guidance

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering
AWS resources

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering/observability workshops

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Chaos engineering/observability workshops

Validating security guardrails
with chaos engineering

Chaos engineering on AWS

AWS fault isolation boundaries Multi-AZ resilience patterns

Resilience engineering

Chaos engineering stories

Serverless chaos workshop

Observability workshop

© 2023, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank You!
Naren Gakka
twitter: @narengka

